Define \(\displaystyle I_n(a)=\int_0^\infty \mathrm t^na^{-t}\,\mathrm{d}t\) for positive real number \(\displaystyle a\) and non-negative integer \(\displaystyle n\).

Then find \(\displaystyle \sum_{n=0}^{\infty} \frac{1}{I_n(\pi)}\) to two decimal places.

Try my other calculus challenges here

×

Problem Loading...

Note Loading...

Set Loading...