Let \[ \lim _{ n\rightarrow \infty }{ \binom{n}{7} { p }^{ r }{ q }^{ n-r } }=\frac {{e}^{A}.{B}^{C}}{D!}\ \]

Find \(A\)+\(B\)+\(C\)+\(D\)

**Given:**\(p+q=1\) and \(np=5\).**Bonus:**Generalize for r and m in place of 7 and 5 respectively.**Notation:**\(\binom{n}{r}=\frac{n!}{(n-r)!r!}\)

×

Problem Loading...

Note Loading...

Set Loading...