We're almost there!

Calculus Level 4

\[\displaystyle \sum _{ n=1 }^{ \infty }{ \left(\sum _{ p=2 }^{ x }{ \frac { 1 }{ { n }^{ p } } } \right) } <2016\]

Find the largest integer value of \(x\) that satisfies the given inequality.


This problem is original.
Picture credits: Wildschönau feiert Neues Jahr 07 by Ximeg, Wikipedia
×

Problem Loading...

Note Loading...

Set Loading...