Is the following sequence of steps valid? If no, which step is wrong?

**Step 1**: Consider the following limit:

$L = \lim_{n \rightarrow \infty} \frac { 1 + 2 + 3 + \cdots + n } { n^2 }$

**Step 2**: Verify that it is of the indeterminate form $\dfrac { \infty}{\infty}$.

- Numerator tends to infinity
- Denominator tends to infinity

**Step 3**: Apply L'hôpital's rule to get

$L = \lim_{n \rightarrow \infty} \frac{ 1 } { 2n } = 0 \; .$

×

Problem Loading...

Note Loading...

Set Loading...