Let \(a_k\) represent the repeating decimal \(0.\overline{133}_k\) for \(k \geq 4\). The product \(a_4 a_5 \cdots a_{99}\) can be expressed as \(\frac{m}{n!}\) where \(m, n\) are positive integers and \(n\) is as small as possible. \(\frac{m}{n}\) can be expressed as \( \frac{p}{q}\) where \(p, q\) are coprime integers. What is \(p+q\)?

Note: \(0.\overline{133}_k\) refers to the repeating decimal \( 0.133133133\ldots \) evalauted in base \(k\).

×

Problem Loading...

Note Loading...

Set Loading...