\[\large \sqrt{1}+\sqrt{2}+\cdots+\sqrt{100}\]

If the sum above can be expressed as

\[a_0 + a_1 \sqrt{b_1} + a_2 \sqrt{b_2} + \cdots + a_n \sqrt{b_n}\]

where \(a_0, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n\) are integers, what is the minimum value of \(n\)?

×

Problem Loading...

Note Loading...

Set Loading...