Forgot password? New user? Sign up
Existing user? Log in
∫0∞cos(6x2)−sin(6x2)1+x4 dx\large \displaystyle \int _{ 0 }^{ \infty }{ \dfrac { \cos\left( 6{ x }^{ 2 } \right) -\sin\left( 6{ x }^{ 2 } \right) }{ 1+{ x }^{ 4 } } \, dx } ∫0∞1+x4cos(6x2)−sin(6x2)dx
The integral above is equal to Aπe−BCD \dfrac { A\pi { e }^{ -B } }{ C\sqrt { D } } CDAπe−B, where AAA and CCC are positive coprime integers, BBB is an integer and DDD is a square-free integer.
Find A+B+C+DA+B+C+DA+B+C+D.
For more calculus problems see this.
Problem Loading...
Note Loading...
Set Loading...