# Where are the numbers?

**Number Theory**Level 3

**True or False:**

Suppose there is a positive integer \(a\) such that \(a!\) has \(m\) trailing number of zeros. There is another distinct positive integer \(b\) such that \(b!\) has \(n\) trailing number of zeros. Then, \((a+b)!\) must have \(m+n\) trailing number of zeros.

**Notation**: \(!\) denotes the factorial notation. For example, \(8! = 1\times2\times3\times\cdots\times8 \).

Want some interesting questions like this?. Enter the world where Calculators will not help

**Your answer seems reasonable.**Find out if you're right!

**That seems reasonable.**Find out if you're right!

Already have an account? Log in here.