\[\large \int _{ 0 }^{ 1 }{ \dfrac { (1-{ x }^{ 2 })\ln { x } }{ 1-{ x }^{ 3 } } \, dx } =\dfrac { { \pi }^{ a } }{ b } -\dfrac { \psi ^{ (1) }(1/c) }{ d } \]

If the above equation holds true for positive integers \(a,b,c\) and \(d\), find \(a+b+c+d\).

**Notation**: \(\psi^{(1)}(\cdot) \) denotes the first derivative of the digamma function.

×

Problem Loading...

Note Loading...

Set Loading...