\[ \large \int_0^1 \dfrac{ \ln(1-x) \ln(1+x) } x \, dx \]

If the value of the integral above is equal to \( -\dfrac ab \zeta (c) \), where \(a,b\) and \(c\) are positive integers with \(a,b\) coprime, find \(a+b+c\).

**Notation**: \(\zeta(\cdot) \) denotes the Riemann zeta function.

×

Problem Loading...

Note Loading...

Set Loading...