\[ A_n= \int_0^1 \int_0^1\int_0^1\int_0^1\dotsi \int_0^1 {\frac{\prod_{i=1}^{n} a_i}{1-\prod_{i=1}^{n} a_i}} da_1da_2da_3\dotsc da_n, \] where the integral sign is repeated \(n\) times.

Find \(\displaystyle \sum_{n=2}^{\infty} A_n\).

×

Problem Loading...

Note Loading...

Set Loading...