\[ \large \displaystyle\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \left \{ \frac { x }{ y } \right\} \left \{ \frac { y }{ x } \right \} \, dxdy=A-\dfrac { \zeta (B) }{ C } } } \]

The equation above holds true for positive integers \(A,B\) and \(C\). Find \(A+B+C\).

**Notations**:

\( \{ \cdot \} \) denotes the fractional part function.

\(\zeta(\cdot) \) denotes the Riemann zeta function.

this is a part of Who's up to the challenge?

×

Problem Loading...

Note Loading...

Set Loading...