\[\lim _{ n\to \infty } \left [ { \sqrt [ n+1 ]{ \Gamma (1)\Gamma \left( \frac { 1 }{ 2 } \right) \Gamma \left( \frac { 1 }{ 3 } \right) \cdots\Gamma \left( \frac { 1 }{ n+1 } \right) } \\ \quad \quad \quad \quad \quad \quad \quad -\sqrt [ n ]{ \Gamma (1)\Gamma \left( \frac { 1 }{ 2 } \right) \Gamma \left( \frac { 1 }{ 3 } \right) \cdots\Gamma \left( \frac { 1 }{ n } \right) } } \right ] \]

If the limit above is equal to \( \dfrac {A}{e^B} \), where \(A\) and \(B\) are positive integers, find \(A+B\).

**Notation**: \( \Gamma(\cdot) \) denotes the Gamma function.

×

Problem Loading...

Note Loading...

Set Loading...