\[ \large -2 \int_0^1 \dfrac{ (\ln x)^3 \; \text{Li}_4 (x) }{1-x} \, dx = a \; \zeta (b) \]

If the equation above holds true for positive integers \(a\) and \(b\), find \(a+b\).

\[ \]

**Notations**:

- \({ \text{Li} }_{ n }(a) \) denotes the polylogarithm function, \({ \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \dfrac { { a }^{ k } }{ { k }^{ n } } } \).
- \(\zeta(\cdot) \) denotes the Riemann zeta function.

×

Problem Loading...

Note Loading...

Set Loading...