\[\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \dfrac { (\ln { } { xy })^4 }{ (1+xy)^{ 2 } }\, dx \; dy } } =\dfrac { A }{ B } \zeta (C)\]

If the equation above holds true for positive integers \(A,B\) and \(C\), where \(A\) and \(B\) are coprime, find \(A+B+C\).

\[\]**Notation**: \(\zeta(\cdot) \) denotes the Riemann zeta function.

×

Problem Loading...

Note Loading...

Set Loading...