Who's up to the challenge? 68

Calculus Level 5

\[\large \lim _{ n\to\infty }{ \dfrac { \sqrt { n } \sqrt [ n ]{ \binom{n}{1}\binom{n}{2}\cdots \binom{n}{n} } }{ { e }^{ n/2 } } } \]

The limit above can be expressed as \(\dfrac { Ae }{ \sqrt { B\pi } } \), where \(A\) and \(B\) are positive integers with \(B\) square-free.

Find \(A+B\).

Notation: \( \dbinom MN \) denotes the binomial coefficient, \( \dbinom MN = \dfrac{M!}{N!(M-N)!} \).

×

Problem Loading...

Note Loading...

Set Loading...