\[\large \int _{ 0 }^{ \infty }{ \dfrac { x\ln { x } }{ 1+{ e }^{ x } } \, dx } =\dfrac { 1 }{ B } \pi ^{ C }-{ \pi }^{ D }\ln { A } +\dfrac { { \pi }^{ E }\ln { F } }{ G } +\dfrac { { \pi }^{ H }\ln { \pi } }{ I } \]

The equation above holds true for positive integers \(B,C,D,F,G,H\) and \(I \) such that \(F\) is minimized.

Find \(B+C+D+E+F+G+H+I\).

**Notation**: \(A\) denotes the Glaisher–Kinkelin constant, \(A \approx 1.2824\).

×

Problem Loading...

Note Loading...

Set Loading...