\[ \large \displaystyle\int _{ 0 }^{ \infty }{ { e }^{ -{ x }^{ 3 } }\sin { { x }^{ 3 } } \, dx } =\dfrac { (\sqrt { A } -1)\Gamma (\frac { B }{ C } ) }{ \sqrt [ 3 ]{ { D }^{ E } } } \]

If the equation above holds true for positive integers \(A,B,C,D\) and \(E\), find the minimum value of \(A+B+C+D+E\).

this is a part of Who's up to the challenge?

×

Problem Loading...

Note Loading...

Set Loading...