# Whose?

**Algebra**Level 2

\[ \large{(x+y)^n=x^n+nx^{n-1}y+\frac{n(n-1)}{1*2}x^{n-2}y^2+\frac{n(n-1)(n-2)}{1*2*3}x^{n-3}y^3+\cdots} \\ \large{+\frac{n(n-1)(n-2)}{1*2*3}x^{3}y^{n-3}+\frac{n(n-1)}{1*2}x^{2}y^{n-2}+nxy^{n-1}+y^n} \]

Name this theorem!

\[ \large{(x+y)^n=x^n+nx^{n-1}y+\frac{n(n-1)}{1*2}x^{n-2}y^2+\frac{n(n-1)(n-2)}{1*2*3}x^{n-3}y^3+\cdots} \\ \large{+\frac{n(n-1)(n-2)}{1*2*3}x^{3}y^{n-3}+\frac{n(n-1)}{1*2}x^{2}y^{n-2}+nxy^{n-1}+y^n} \]

Name this theorem!

×

Problem Loading...

Note Loading...

Set Loading...