New user? Sign up

Existing user? Log in

For a function $f(x)$ such that

$x^4\left(f(x)\right)^4+x^2=3x^3\left(f(x)\right)^2,$

let the largest possible value of $f(2014)$ over all possible functions $f(x)$ be $M.$ Find $\lfloor 1000M\rfloor .$

Problem Loading...

Note Loading...

Set Loading...