Forgot password? New user? Sign up
Existing user? Log in
log2[cos(2π2015)cos(4π2015)cos(6π2015)⋯cos(4028π2015)]= ?\large{\log_2 \left[\cos \left( \dfrac{2 \pi}{2015} \right) \cos \left( \dfrac{4 \pi}{2015} \right) \cos \left( \dfrac{6 \pi}{2015} \right) \dotsm \cos \left( \dfrac{4028 \pi}{2015} \right) \right]} = \ ?log2[cos(20152π)cos(20154π)cos(20156π)⋯cos(20154028π)]= ?
Bonus : Generalize ∏k=02ncos(2kπ2n+1)\displaystyle \prod_{k=0}^{2n} \cos \left( \dfrac{2 k\pi}{2n+1} \right) k=0∏2ncos(2n+12kπ) in terms of nnn with a proper derivation without using methods like Induction.
Problem Loading...
Note Loading...
Set Loading...