Forgot password? New user? Sign up
Existing user? Log in
ζ(γ)=ηγ4+δγ3+32γ2−17γ+6\large\zeta(\gamma) = \eta\gamma^4+\delta\gamma^3+32\gamma^2-17\gamma + 6ζ(γ)=ηγ4+δγ3+32γ2−17γ+6
Above shows a 4th degree polynomial ζ(γ)\zeta(\gamma) ζ(γ) with constant leading term η \etaη. If (3γ2−2γ+1)(3\gamma^2-2\gamma+1)(3γ2−2γ+1) divides the polynomial ζ(γ) \zeta(\gamma)ζ(γ), find the value of η+δ\eta+\deltaη+δ.
Bonus: Find the other factor of ζ(γ)\zeta(\gamma)ζ(γ).
Problem Loading...
Note Loading...
Set Loading...