Let \({V}_{1}\) be the volume generated by all the possible positions of \(P(x,y,z)\) such that \[\left\lfloor \left| x \right| \right\rfloor +\left\lfloor \left| y \right| \right\rfloor +\left\lfloor \left| z \right| \right\rfloor =n\] And let \({V}_{2}\) be the volume enclosed by the surface \[\left| x \right| +\left| y \right| +\left| z \right| =\frac{n+1}{\sqrt{2}}\] If \({V}_{1}+{V}_{2} =800 \text{ unit}^{3}\). Find \(n\)

**Notations**:

- \( \lfloor \cdot \rfloor \) denotes the floor function.
- \( | \cdot | \) denotes the absolute value function.

×

Problem Loading...

Note Loading...

Set Loading...