Working with Vieta

Algebra Level 5

Let \(a,b,c\) be the real roots of the cubic equation \(2t^3+3t^2-9t-6=0\). Suppose that \[\left|\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\right|=\dfrac{m}{n}\] for some relatively prime positive integers \(m\) and \(n\). Find \(m+n\).

×

Problem Loading...

Note Loading...

Set Loading...