\[\large f( x ) =\int _{ 1/e }^{ \tan { x } }{ \dfrac { t }{ 1+{ t }^{ 2 } } \, dt } +\int _{1/e }^{ \cot x }{ \dfrac { 1 }{ t( 1+{ t }^{ 2 } ) } \, dt } \]

Find the value of \(f\left(\dfrac{e}{2}\right)\).

**Clarification**: \(e \approx 2.71828\) denotes the Euler's number.

×

Problem Loading...

Note Loading...

Set Loading...