New user? Sign up

Existing user? Sign in

\[\large f(x) = \sqrt{x^4-3x^2-6x+13} - \sqrt{x^4-x^2+1} \]

Function \(f(x)\) above is defined for all real \(x\). Find the maximum value of ...

\[\large{ S = \sum_{k=1}^{2006} (-1)^k \dfrac{k^2 - 3}{(k+1)!}}\]

If \((S-1)\) can be represented as \(\dfrac{A}{B!}\) where \(A,B\) are positive integers each ...

\[S=\dfrac{5}{1 \times 3 \times 7}+\dfrac{7}{3 \times 5 \times 9}+\dfrac{9}{5 \times 7 \times 11}+\cdots \]

If \(45S = n^2+ 1\), where ...

\[ 1 + \frac{1}{2}{5\choose3}+\frac{3}{4}{6\choose3}+{7\choose3}+\frac{5}{4}{8\choose3}+\frac{3}{2}{9\choose3}+\frac{7}{4}{10\choose3} = {a\choose b}\]

Find number of distinct real roots of the equation: \(\large{ 54 x^4-36 x^3+18 x^2-6 x +1=0}\)

Problem Loading...

Note Loading...

Set Loading...