New user? Sign up

Existing user? Log in

Find the smallest value of \(k\), which satisfies: \[\sum\limits_{n=1}^k \tan^{-1} \Bigg( \dfrac{1}{ \sqrt{n}} \Bigg) > 2 \pi\]

Determine the antilogarithm (base \(e\)) of \[ \int_0^1 \dfrac{x^3-1}{\ln x} \mathrm{d}x \]

Suppose \( s_t = \displaystyle{\lim_{n \to \infty}} \sum_{r=1}^{n} \dfrac{2^r}{t^{2^r}+1}\). Determine \(\dfrac{s_7}{s_{17}}\).

\[\large \begin{pmatrix} 0.3 & b & c \\ l & m & n \\ o & p & q \end{pmatrix} \]

If the matrix above is orthogonal, find the sum ...

If \(1024(11-5ix) = 11x^{10} + 20ix^9 \) for \(i = \sqrt{-1} \), then which of the following is true regarding the magnitude of \(x\)?

Problem Loading...

Note Loading...

Set Loading...