New user? Sign up

Existing user? Log in

\[\large f(x) = \lim_{n\to\infty} \dfrac{\lfloor x\rfloor+\lfloor 2x\rfloor+\lfloor 3x\rfloor+\cdots +\lfloor nx\rfloor}{n^2}\]

Let \(f(x)\) be defined as above ...

\[\large \int_0^1\left(\frac{1}{\ln x} + \frac{1}{1-x}\right)^2 \, dx = \ln (n\pi) -\dfrac{a}{b}\]

The equation above is true for constants \(a,b\) and ...

\[1-\frac { 1 }{ 2 } +\frac { 1 }{ 3 } -\frac { 1 }{ 5 } +\frac { 1 }{ 6 } -\frac { 1 }{ 7 } +\frac { 1 }{ 9 } -\frac { 1 }{ 10 } +\frac { 1 }{ 11 } -\frac { 1 }{ 13 } +\frac { 1 }{ 14 } -\frac { 1 }{ 15 } +\frac { 1 }{ 17 } -\dots\]

Wiki collaboration

This week, we will be improving:

Each meeting will be conducted over Slack chat and will last for approximately 60-90 minutes. We will achieve the following:

Problem Loading...

Note Loading...

Set Loading...