New user? Sign up

Existing user? Sign in

\[\large A(\sqrt{3}-\sqrt{2})x^2+\frac{B}{\sqrt{3}+\sqrt{2}}x+C=0\]

If \(E\) and \(F\) are the roots of the quadratic equation above, where ...

The rate of a reaction doubles when its temperature changes from 300 K to 310 K. What is the activation energy of such a reaction in kJ/mol?

Note: Use ...

A hypothetical reaction \[X_2+Y_2\rightarrow 2XY\] follows the mechanism given below

\[X_2\rightleftharpoons X+X\ \ (\text{Fast})\] \[X+Y_2\rightarrow XY+Y\ \ (\text{Slow})\] ...

\[\sqrt {1 + \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}}} + \sqrt {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}}} + \sqrt {1 + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}}} + ... + \sqrt {1 + \frac{1}{{{{2013}^2}}} + \frac{1}{{{{2014}^2}}}} = \frac{{ac}}{b}\]

\[\begin{eqnarray} \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} + \cdots + \frac{100}{98!+99!+100!} \end{eqnarray} \]

Find the value of the ...

Problem Loading...

Note Loading...

Set Loading...