New user? Sign up

Existing user? Sign in

\[\large{\begin{array} && K&I&M&O&N&O \\ + && O&S&A&K&A\\ + \ \ S&A&S&H&I&M&I \\ \hline =K&A&R&A&O&K&E& \end{array}}\]

Find \(\overline{OSAKA}\)

\[ \begin{array}{ccccccc} & & \color{blue}{A} & \color{blue}{A} &\color{blue}{A} \\ & & \color{red}{B} & \color{red}{B} & \color{red}{B} \\ + & & \color{green}{C} & \color{green}{C} & \color{green}{C} \\ \hline & & D & D & D\\ \end {array} \]

Let \(s(n)\) be the sum of the digits of \(n\)'s base-\(2017\) representation. Compute the sum \[ \sum_{n = 1}^{\infty} \frac{s(n)}{n(n+1)}.\]

Round your ...

A Pythagorean triple is a set of positive integers \(a < b < c\) such that \(a^2 + b^2 = c^2\). Some examples are ...

Problem Loading...

Note Loading...

Set Loading...