Competitive Math Assessment - Efficiency Practice Quiz \#1

Here are some suggestions for how to practice replicating testing conditions:

- Make sure you have a quiet place to practice on your own for an extended period of time. This will help model the actual experience of a competition. When you have finished the quiz, check your solutions using the online Brilliant quiz.
- Set a timer, or at least keep an eye on the clock to learn your own pace. If you want to set a specific time goal, math competitions provide an average of about 2 minutes per problem, so you should give yourself 30-40 minutes to complete these problems. Keep in mind that the general difficulty of problems increases as you move forward.
- Some competitions allow students to use calculators while others do not. We encourage you to use a calculator only for the most in-depth calculations on this practice quiz.

1. \qquad
2. \qquad If $a \star b=\frac{2 a}{3 b+2}$, then what is $10 \star(7 \star 4)$?
3. \qquad If C and D represent two different digits from 1 to 9 , what is the value of D ?

4. \qquad Evaluate

$$
\frac{1+2+3+\ldots+78+79+80}{1+2+3+\ldots+13+14+15}
$$

5. \qquad If x is an integer such that $\sqrt{8^{4}}=x^{2}$ and $x<0$, what is the value of x ?
6. \qquad
7. \qquad In the equation below, the \square symbols can be filled with any of the symbols,,$+- \times$, or \div. What symbol must go in the square farthest to the right?

$$
2 \square 2 \square 2 \square 2=-6
$$

A. \div
B. +
C. \times
D. -
8. \qquad Which statement places the values below in the correct order?

$$
\begin{aligned}
a & =2 \sqrt{8} \\
b & =2 \sqrt{10} \\
c & =\sqrt{35} \\
d & =6 \\
e & =2 \sqrt{9}
\end{aligned}
$$

A. $a<c<d=e<b$
B. $a<d=e<c<b$
C. $c<d<a<e<b$
D. $d<a<e<b<c$
9. \qquad Let n be a whole number such that $n>1$. If n is a perfect square and also a perfect cube, what is the smallest possible value for n ?
10. \qquad Which of the following shows the numbers below arranged from least to greatest?
A. $16^{8}<8^{16}<4^{32}<32^{4}$
B. $4^{32}<8^{16}<16^{8}<32^{4}$
C. $32^{4}<16^{8}<4^{32}<8^{16}$
D. $32^{4}<16^{8}<8^{16}<4^{32}$
11. \qquad How many times should 7^{2} appear under the square root sign for the equation below to be true?

$$
\sqrt{7^{2}+7^{2}+7^{2}+\ldots+7^{2}+7^{2}+7^{2}}=7^{2}+7^{2}+7^{2}
$$

12. \qquad Which of the following has the greatest value?
A. 7^{12}
B. 5^{16}
C. 3^{24}
D. 2^{36}
13. \qquad What is the value of

$$
50^{2}-49^{2}+48^{2}-47^{2}+\ldots+4^{2}-3^{2}+2^{2}-1^{2} ?
$$

14. \qquad What is equivalent to $\sqrt{2 \sqrt{2 \sqrt{2}}}$?
A. $8^{1 / 8}$
B. $8^{1 / 3}$
C. $64^{1 / 4}$
D. $128^{1 / 8}$
15. \qquad

If P and Q represent two different digits from 1 to 9 , find the value of the 2-digit integer $P Q$.

$$
\begin{array}{r}
9 P \\
-\quad P Q \\
\hline Q 6
\end{array}
$$

