# Test wiki

###### This wiki is incomplete.

PS: Here are examples of great wiki pages — Fractions, Chain Rule, and Vieta Root Jumping

This is a test wiki.
**Newcomb's paradox** (or Newcomb's problem) is a proble"m in de& cisioa eu < > ||on theory in which the seemingly ration

1 2`print(animals.head()) print(animals.tail())`

#### Contents

## testing

Function Name* | Provided Functionality |

`new` | Creates an empty list. |

`append` | Adds an item to the end of the list. |

`prepend` | Adds an item to the beginning of the list. |

`head` | Returns the item at the beginning of the list. |

`tail` | Returns all items except the item at the beginning of the list. Effectively, the entire list without the head. |

`is_empty` | Returns a bool indicating whether or not the list contains any items. |

*Exact names are not required. In fact, some functionality may be provided by a given language directly via special syntax.

## Testing visualizations

This fractal tree grows as you slide your mouse upwards over it.

(Explanation of why this is important / how it is relevant to chapter about fractals)

## Images

## Videos

\[\\\\\]

Testing videos to make sure they can float properly.

## Mathjax

\( 123 \si{\kilo\gram} \)

\(\overparen{xy}\)

\(\overparen{ABC}\)

#### Bra ket notation

Test Bra macro: \(\Bra{ \frac{d}{dt} \psi (x) }\)

#### All bra ket macros:

bra: \( \bra{\text{hello2}} \)

ket: \(\ket{\text{hello}}\)

Bra: \(\Bra{\text{hello}}\)

Ket: \(\Ket{\text{hello}}\)

ketbra: \(\ketbra{\text{hello1}}{\text{hello2}}\)

braket: \(\braket{\text{hello world}}\)

#### Advanced braket:

No space \[\mathbf{P}_{1,+x} = |_x \braket{+|+}|^2 = \frac{1}{2}\\ \mathbf{P}_{1, -x} = |_x \braket{-|+}|^2 = \frac{1}{2}\\ \mathbf{P}_{2, +x} = |_x \braket{+|-}|^2 = \frac{1}{2}\\ \mathbf{P}_{2, -x} = |_x \braket{-|-}|^2 = \frac{1}{2}\]

Space \[\mathbf{P}_{1,+x} = |_x \braket{+ |+}|^2 = \frac{1}{2}\\ \mathbf{P}_{1, -x} = |_x \braket{-|+}|^2 = \frac{1}{2}\\ \mathbf{P}_{2, +x} = |_x \braket{+|-}|^2 = \frac{1}{2}\\ \mathbf{P}_{2, -x} = |_x \braket{-|-}|^2 = \frac{1}{2}\]