Difference Of Squares
The difference of two squares identity is a squared number subtracted from another squared number to get factorized in the form of
We will also prove this identity by multiplying polynomials on the left side and getting equal to the right side. This identity is often used in algebra where it is useful in applications to integer factorization, the quadratic sieve, the algebraic factorization, etc.
Identity
The difference of two squares identity is . We can prove this identity by multiplying the expressions on the left side and getting equal to the right side expression. Here is the proof of this identity.
Let's begin with the left side of the expression. We have
which is equal to the right side of the identity. Hence proved.
Example Problems
This section contains examples and problems to boost understanding in the usage of the difference of squares identity: .
Here are the examples to learn the usage of the identity.
Rewrite as a product.
We have
Calculate .
You can brute force the answer to this problem by using a calculator, but we have a sweeter way. We can apply the difference of two squares identity.
At first we may think about using the long multiplication method, but it wastes time and is, of course, boring. Notice that and , so
Show that any odd number can be written as the difference of two squares.
Let the odd number be , where is a non-negative integer. Then we have
What is
Using the same method as the example above,
Solve the following problems:
Which of the following equals for ?
What is
Note: Try it without using a calculator.
Don't use a calculator!
Further Extension
Since the two factors are different by , the factors will always have the same parity. That is, if is even then must also be even, so the product is divisible by four. Or neither are divisible by 2, so the product is odd. This implies that numbers which are multiple of 2 but not 4 cannot be expressed as the difference of 2 squares.
The product of two differences of two squares is itself a difference of two squares in two different ways:
Problem Solving
The examples and problems in this sections are a bit harder for enhancing the problem solving skills. Let's give them a try.
Here are the examples to go through.
Simplify
This is a very direct application of the identity mentioned in this text. We have
Notice that the product from the second term to the term is equal to 1, and therefore the final product is .
Simplify
We may choose to expand it out, but that is time intensive and very error prone. Let's have the identity tackle this problem. We have
Likewise, the product of the last two terms is
The final product is
Try the following problems at your own.
What is the value of that satisfies the equation above?
Evaluate the following expression:
If you use a calculator whose precision is not strong enough to answer this question, then you will answer this problem incorrectly.
If
then what is the value of
If you were only given that
can you find the sum of digits of the exact value of ?
Notes: Yes, don't use Wolfram Alpha or a calculator to solve this (though you may use a calculator to calculate the digit sum).
Details and Assumptions:
- and are real numbers.
It is given that and they satisfy the equation given below:
What is the value of
Note: This problem is not original. It is adapted from a question posted on Math SE.
Given the above equation, what is