展豪 張
contributed
Let x=a+bi,y=c+di∈C.
Let ⋅ denote the conjugate of a complex number.
x+y=a+bi+c+di=(a+c)+(b+d)i=(a+c)−(b+d)i
x+y=a+bi+c+di=a−bi+c−di=(a+c)−(b+d)i
□
Let x=a+bi,y=c+di∈C.
Let ⋅ denote the conjugate of a complex number.
xy=(a+bi)(c+di)=(ac−bd)+(bc+ad)i=(ac−bd)−(bc+ad)i
(x)(y)=(a+bi)(c+di)=(a−bi)(c−di)=(ac−bd)−(bc+ad)i
□
This is immediate from Lemma 2.
Let P(x)=i=0∑naixi.
Let z be a root of P(x), i.e. P(z)=0 (by factor theorem).
Then,
P(z)
=i=0∑naizi
=i=0∑n(ai)(zi) (real coefficients)
=i=0∑n(ai)(zi) (Lemma 3)
=i=0∑n(aizi) (Lemma 2)
=i=0∑naizi (Lemma 1)
=P(z)
=0
=0
By factor theorem, z is also a root.
■