Find d d x ( 3 x 3 − x − 2 2 x ) . \frac{d}{dx}\left(\frac{3x^3-x-2}{2x}\right). d x d ( 2 x 3 x 3 − x − 2 ) .
Using the formula above, let 3 x 3 − x − 2 = f ( x ) 3x^3-x-2=f(x) 3 x 3 − x − 2 = f ( x ) and 2 x = g ( x ) . 2x=g(x). 2 x = g ( x ) . Then
d d x h ( x ) = ( 2 x ) ( 9 x 2 − 1 ) − ( 3 x 3 − x − 2 ) ( 2 ) ( 2 x ) 2 = 18 x 3 − 2 x − 6 x 3 + 2 x + 4 4 x 2 = 3 x 3 + 1 x 2 . □ \begin{aligned}
\frac{d}{dx} h(x)
&=\frac{(2x)(9x^2-1)-(3x^3-x-2)(2)}{(2x)^2}\\
&=\frac{18x^3-2x-6x^3+2x+4}{4x^2}\\
&=\frac{3x^3+1}{x^2}.\ _\square
\end{aligned} d x d h ( x ) = ( 2 x ) 2 ( 2 x ) ( 9 x 2 − 1 ) − ( 3 x 3 − x − 2 ) ( 2 ) = 4 x 2 18 x 3 − 2 x − 6 x 3 + 2 x + 4 = x 2 3 x 3 + 1 . □
Doing differentiation for a rational term is quite complicated and confusing when the expressions are very much complicated. In such cases, you can assume the numerator as one expression and the denominator as one expression and find their separate derivatives. Now write the combined derivative of the fraction using the above formula and substitute directly so that there will be no confusion and the chances of doing mistakes will be reduced. The following few examples illustrate how to do this:
If y = a − x a + x ( x ≠ − a ) , y = \frac{a - x}{a + x}\ (x \neq -a), y = a + x a − x ( x = − a ) , then find d y d x \frac{dy}{dx} d x d y .
Write u ( x ) = a − x ⟹ u ′ ( x ) = − 1 u(x) = a - x \implies u'(x) = -1 u ( x ) = a − x ⟹ u ′ ( x ) = − 1 and v ( x ) = a + x ⟹ v ′ ( x ) = 1 v(x) = a + x \implies v'(x) = 1 v ( x ) = a + x ⟹ v ′ ( x ) = 1 so that y = u ( x ) v ( x ) : y = \frac{u(x)}{v(x)}: y = v ( x ) u ( x ) :
d y d x = v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) ( v ( x ) ) 2 = ( a + x ) ( − 1 ) − ( a − x ) ( 1 ) ( a + x ) 2 = − 2 a a 2 + 2 a x + x 2 . □ \begin{aligned} \dfrac{dy}{dx} & = \dfrac{v(x)u'(x) - v'(x)u(x)}{\big(v(x)\big)^2} \\\\ & = \dfrac{(a + x)(-1) - (a - x)(1)}{(a + x)^2} \\\\ & = \dfrac{-2a}{a^2 + 2ax + x^2} .\ _\square \end{aligned} d x d y = ( v ( x ) ) 2 v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) = ( a + x ) 2 ( a + x ) ( − 1 ) − ( a − x ) ( 1 ) = a 2 + 2 a x + x 2 − 2 a . □
If y = p x 2 + q x + r a x + b ( ∣ a ∣ + ∣ b ∣ ≠ 0 ) , y = \frac{px^2 + qx + r}{ax + b}\ \big(|a| + |b| \neq 0\big), y = a x + b p x 2 + q x + r ( ∣ a ∣ + ∣ b ∣ = 0 ) , then find d y d x \frac{dy}{dx} d x d y .
Write u ( x ) = p x 2 + q x + r ⟹ u ′ ( x ) = 2 p x + q u(x) = px^2 + qx + r \implies u'(x) = 2px + q u ( x ) = p x 2 + q x + r ⟹ u ′ ( x ) = 2 p x + q and v ( x ) = a x + b ⟹ v ′ ( x ) = a v(x) = ax + b \implies v'(x) = a v ( x ) = a x + b ⟹ v ′ ( x ) = a so that y = u ( x ) v ( x ) : y = \frac{u(x)}{v(x)}: y = v ( x ) u ( x ) :
d y d x = d d x ( u ( x ) v ( x ) ) = v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) ( v ( x ) ) 2 = ( a x + b ) ( 2 p x + q ) − ( a ) ( p x 2 + q x + r ) ( a x + b ) 2 = a p x 2 + 2 b p x + b q − a r a 2 x 2 + 2 a b x + b 2 . □ \begin{aligned} \dfrac{dy}{dx} & = \dfrac{d}{dx} \left(\dfrac{u(x)}{v(x)}\right)\\\\ & = \dfrac{v(x)u'(x) - v'(x)u(x)}{\big(v(x)\big)^2} \\\\ & = \dfrac{(ax + b)(2px + q) - (a)(px^2 + qx + r)}{(ax + b)^2} \\\\ & = \dfrac{apx^2 + 2bpx + bq - ar}{a^2x^2 + 2abx + b^2}.\ _\square \end{aligned} d x d y = d x d ( v ( x ) u ( x ) ) = ( v ( x ) ) 2 v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) = ( a x + b ) 2 ( a x + b ) ( 2 p x + q ) − ( a ) ( p x 2 + q x + r ) = a 2 x 2 + 2 ab x + b 2 a p x 2 + 2 b p x + b q − a r . □
If y = 1 a x 2 + b x + c ( ∣ a ∣ + ∣ b ∣ + ∣ c ∣ ≠ 0 ) , y = \frac{1}{ax^2 + bx + c}\ \big(|a| + |b| + |c| \neq 0\big), y = a x 2 + b x + c 1 ( ∣ a ∣ + ∣ b ∣ + ∣ c ∣ = 0 ) , then find d y d x \frac{dy}{dx} d x d y .
Write u ( x ) = 1 ⟹ u ′ ( x ) = 0 u(x) = 1 \implies u'(x) = 0 u ( x ) = 1 ⟹ u ′ ( x ) = 0 and v ( x ) = a x 2 + b x + c ⟹ v ′ ( x ) = 2 a x + b v(x) = ax^2 + bx + c \implies v'(x) = 2ax + b v ( x ) = a x 2 + b x + c ⟹ v ′ ( x ) = 2 a x + b so that y = u ( x ) v ( x ) : y = \frac{u(x)}{v(x)}: y = v ( x ) u ( x ) :
d y d x = d d x ( u ( x ) v ( x ) ) = v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) ( v ( x ) ) 2 = ( a x 2 + b x + c ) ( 0 ) − ( 2 a x + b ) ( 1 ) ( a x 2 + b x + c ) 2 = − ( 2 a x + b ) ( a x 2 + b x + c ) 2 . □ \begin{aligned} \dfrac{dy}{dx} & = \dfrac{d}{dx} \left(\dfrac{u(x)}{v(x)}\right)\\\\ & = \dfrac{v(x)u'(x) - v'(x)u(x)}{\big(v(x)\big)^2} \\\\ & = \dfrac{(ax^2 + bx + c)(0) - (2ax + b)(1)}{(ax^2 + bx + c)^2} \\\\ & = \dfrac{-(2ax + b)}{(ax^2 + bx + c)^2} .\ _\square \end{aligned} d x d y = d x d ( v ( x ) u ( x ) ) = ( v ( x ) ) 2 v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) = ( a x 2 + b x + c ) 2 ( a x 2 + b x + c ) ( 0 ) − ( 2 a x + b ) ( 1 ) = ( a x 2 + b x + c ) 2 − ( 2 a x + b ) . □
If y = a x + b c x + d ( ∣ c ∣ + ∣ d ∣ ≠ 0 ) , y = \frac{ax + b}{cx + d}\ \big(|c| + |d| \neq 0\big), y = c x + d a x + b ( ∣ c ∣ + ∣ d ∣ = 0 ) , then find d y d x \frac{dy}{dx} d x d y .
Write u ( x ) = a x + b ⟹ u ′ ( x ) = a u(x) = ax + b \implies u'(x) = a u ( x ) = a x + b ⟹ u ′ ( x ) = a and v ( x ) = c x + d ⟹ v ′ ( x ) = c v(x) = cx + d \implies v'(x) = c v ( x ) = c x + d ⟹ v ′ ( x ) = c so that y = u ( x ) v ( x ) : y = \frac{u(x)}{v(x)}: y = v ( x ) u ( x ) :
d y d x = d d x ( u ( x ) v ( x ) ) = v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) ( v ( x ) ) 2 = ( c x + d ) ( a ) − ( c ) ( a x + b ) ( c x + d ) 2 = a d − b c ( c x + d ) 2 . □ \begin{aligned} \dfrac{dy}{dx} & = \dfrac{d}{dx} \left(\dfrac{u(x)}{v(x)}\right)\\\\ & = \dfrac{v(x)u'(x) - v'(x)u(x)}{\big(v(x)\big)^2} \\\\ & = \dfrac{(cx + d)(a) - (c)(ax + b)}{(cx + d)^2} \\\\ & = \dfrac{ad - bc}{(cx + d)^2} .\ _\square \end{aligned} d x d y = d x d ( v ( x ) u ( x ) ) = ( v ( x ) ) 2 v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) = ( c x + d ) 2 ( c x + d ) ( a ) − ( c ) ( a x + b ) = ( c x + d ) 2 a d − b c . □
If y = 1 − x x 1 + x x ( x > 0 ) , y = \frac{1 - x\sqrt{x}}{1 + x\sqrt{x}}\ (x > 0), y = 1 + x x 1 − x x ( x > 0 ) , then find d y d x \frac{dy}{dx} d x d y .
Write u ( x ) = 1 − x x ⟹ u ′ ( x ) = 0 − x − x 2 x = − 3 x 2 u(x) = 1 - x\sqrt{x} \implies u'(x) = 0 - \sqrt{x} - \frac{x}{2\sqrt{x}} = - \frac{3\sqrt{x}}{2} u ( x ) = 1 − x x ⟹ u ′ ( x ) = 0 − x − 2 x x = − 2 3 x and v ( x ) = 1 + x x ⟹ v ′ ( x ) = 0 + x + x 2 x = 3 x 2 . v(x) = 1 + x\sqrt{x} \implies v'(x) = 0 + \sqrt{x} + \frac{x}{2\sqrt{x}} = \frac{3\sqrt{x}}{2}. v ( x ) = 1 + x x ⟹ v ′ ( x ) = 0 + x + 2 x x = 2 3 x .
Now,
y = u ( x ) v ( x ) ⇒ d y d x = v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) ( v ( x ) ) 2 = ( 1 + x x ) ( − 3 x 2 ) − ( 3 x 2 ) ( 1 − x x ) ( 1 + x x ) 2 = − 3 x − 3 x 2 − ( 3 x − 3 x 2 ) 2 ( 1 + x x ) 2 = − 6 x 2 ( 1 + x x ) 2 = − 3 x ( 1 + x x ) 2 . □ \begin{aligned} y & = \dfrac{u(x)}{v(x)} \\\\ \Rightarrow \dfrac{dy}{dx} & = \dfrac{v(x)u'(x) - v'(x)u(x)}{\big(v(x)\big)^2} \\\\ & = \dfrac{(1 + x\sqrt{x})\left(-\dfrac{3\sqrt{x}}{2}\right) - \left(\dfrac{3\sqrt{x}}{2}\right)(1 - x\sqrt{x})}{(1 + x\sqrt{x})^2} \\\\ & = \dfrac{-3\sqrt{x} - 3x^2 - (3\sqrt{x} - 3x^2)}{2(1 + x\sqrt{x})^2} \\\\ & = \dfrac{-6\sqrt{x}}{2(1 + x\sqrt{x})^2} \\\\ & = -\dfrac{3\sqrt{x}}{(1 + x\sqrt{x})^2} .\ _\square \end{aligned} y ⇒ d x d y = v ( x ) u ( x ) = ( v ( x ) ) 2 v ( x ) u ′ ( x ) − v ′ ( x ) u ( x ) = ( 1 + x x ) 2 ( 1 + x x ) ( − 2 3 x ) − ( 2 3 x ) ( 1 − x x ) = 2 ( 1 + x x ) 2 − 3 x − 3 x 2 − ( 3 x − 3 x 2 ) = 2 ( 1 + x x ) 2 − 6 x = − ( 1 + x x ) 2 3 x . □