Fundamental Trigonometric Identities - Problem Solving (Easy)
When working with trigonometric identities, it may be useful to keep the following tips in mind:
- Draw a picture illustrating the problem if it involves only the basic trigonometric functions.
- If the problem expresses an identity between trigonometric functions, try working on one side of the identity to write the trigonometric functions from one side in terms of trigonometric functions on the other side.
- Use the Pythagorean identities to compute values in the trigonometric identity.
- Multiply rational expressions by conjugates in order to take advantage of the Pythagorean identities.
- Add rational expressions by finding common denominators.
Contents
- Fundamental Formulas
- Specific Values
- Pythagorean Identities
- Symmetry Properties
- Periodicity Identities
- Complementary Angle Identities
- Double-angle Formulas
- Sum and Difference Formulas
- Triple-angle Formulas
- Half-angle Tangent Formulas
- Power Reduction Identities
- Product-to-Sum Formulas
- Sum-to-Product Formulas
- Fundamental Trigonometric Identities - Problem Solving (Basic)
- Fundamental Trigonometric Identities - Problem Solving (Intermediate)
- Additional Problems
Fundamental Formulas
The fundamental period of the graphs of \(\sin x, \cos x, \csc x, \sec x \) is \(2\pi,\) while the fundamental period of the graphs of \( \tan x, \cot x \) is \(\pi\).
Pythagorean identities:
\[\begin{eqnarray} \sin^2 A + \cos^2 A &=& 1 \\ \tan^2 A + 1 &=& \sec^2 A \\ \cot^2 A + 1 &=& \csc^2 A. \end{eqnarray} \]
Compound angle formulas:
\[\begin{eqnarray} \sin(A\pm B) &=& \sin A \cos B \pm \cos A \sin B \\ \cos(A\pm B) &=& \cos A \cos B \mp \sin A \sin B \\ \tan(A\pm B) &=& \frac{ \tan A \pm \tan B } { 1 \mp \tan A \tan B }. \end{eqnarray} \]
Specific Values
You may find the following table useful:
\[ \begin{array} {| c | c | c | c | c | c |} \hline \theta & 0^\circ & \frac{\pi}{6} = 30^\circ & \frac{\pi}{4} = 45^\circ & \frac{\pi}{3} = 60^\circ & \frac{\pi}{2} = 90^\circ\\ \hline \sin \theta & \frac {\sqrt{0}} {2} & \frac {\sqrt{1}} {2} & \frac {\sqrt{2}} {2} & \frac {\sqrt{3}} {2} & \frac {\sqrt{4}} {2} \\ \hline \cos \theta & \frac {\sqrt{4}} {2} & \frac {\sqrt{3}} {2} & \frac {\sqrt{2}} {2} & \frac {\sqrt{1}} {2} & \frac {\sqrt{0}} {2}\\ \hline \tan \theta & 0 & \frac { 1}{\sqrt{3} } & 1 & \sqrt{3} & \infty \\ \hline \end{array}\]
Pythagorean Identities
For any angle \(\theta,\) we have
\[\begin{align} \cos^2 \theta + \sin^2 \theta &= 1 \\ 1 + \tan^2 \theta &= \sec^2 \theta \\ \cot^2 \theta + 1 &= \csc^2 \theta. \end{align}\]
Symmetry Properties
For any angle \(\theta,\) we have
\[\begin{align} \cos(-\theta) &= \cos \theta \\ \sin(-\theta) &= -\sin \theta\\ \tan(-\theta) &= -\tan \theta\\ \cot(-\theta) &= -\cot \theta\\ \csc(-\theta) &= -\csc \theta\\ \sec(-\theta) &= \sec \theta. \end{align}\]
Periodicity Identities
For any angle \(\theta,\) we have
\[\begin{align} \sin \theta &=\sin(\theta+2\pi) &\quad \csc \theta &=\csc(\theta+2\pi)\\ \cos \theta &=\cos(\theta+2\pi) &\quad \sec \theta &=\sec(\theta+2\pi)\\ \tan \theta &=\tan(\theta+\pi) &\quad \cot \theta &=\cot(\theta+\pi). \end{align}\]
Complementary Angle Identities
For any angle \(\theta,\) we have
\[ \begin{align} \cos \theta & = \sin \left( \frac{\pi}{2} - \theta \right) \\ \sin \theta &= \cos \left( \frac{\pi}{2}-\theta \right) \\ \cot \theta & = \tan \left( \frac{\pi}{2} - \theta \right) \\ \csc \theta & = \sec \left( \frac{\pi}{2} - \theta \right). \end{align}\]
Double-angle Formulas
For any angle \(\theta,\) we have
\[\begin{align} \sin 2 \theta &= 2\sin \theta \cos \theta \\\\ \cos 2\theta &= \cos^2 \theta - \sin^2 \theta \\ &= 2\cos^2 \theta - 1\\ &= 1 - 2\sin^2 \theta \\\\ \tan 2\theta &= \frac{2\tan \theta}{1 - \tan^2 \theta}. \end{align} \]
Sum and Difference Formulas
For any angle \(\theta,\) we have
\[\begin{align} \sin(x+y) &= \sin x \cos y + \cos x \sin y \\ \sin(x-y) &= \sin x \cos y - \cos x \sin y \\\\ \cos(x+y) &= \cos x \cos y − \sin x \sin y \\ \cos(x-y) &= \cos x \cos y + \sin x \sin y \\\\ \tan(x+y) &= \dfrac{\tan x + \tan y}{1 - \tan x \tan y} \\ \tan(x-y) &= \dfrac{\tan x - \tan y}{1 + \tan x \tan y}. \end{align} \]
Triple-angle Formulas
For any angle \(\theta,\) we have
\[\begin{align} \sin 3 \theta &= 3 \sin \theta - 4 \sin ^3 \theta \\ \cos 3\theta &= 4 \cos ^ 3 \theta - 3 \cos \theta. \end{align} \]
Half-angle Tangent Formulas
For any angle \(\theta,\) we have
\[\sin\theta=\frac{2\tan\frac{\theta}{2}}{1+\tan^{2}\frac{\theta}{2}} \\ \cos\theta=\frac{1-\tan^{2}\frac{\theta}{2}}{1+\tan^{2}\frac{\theta}{2}} \\ \tan\theta=\frac{2\tan\frac{\theta}{2}}{1-\tan^{2}\frac{\theta}{2}}.\]
Power Reduction Identities
For any angle \(\theta,\) we have
\[\begin{align} \sin^2 \theta &=\frac{1}{2}(1-\cos 2\theta) \\ \cos^2 \theta &=\frac{1}{2}(1+\cos 2\theta). \end{align} \]
Product-to-Sum Formulas
For any angle \(\theta,\) we have
\[\begin{align} \cos x \cos y & = \frac{1}{2} \big(\cos (x - y) + \cos(x+ y) \big) \\ \sin x \cos y &= \frac{1}{2} \big(\sin (x- y) + \sin(x + y) \big) \\ \cos x \sin y &= \frac{1}{2} \big(\sin (x + y) - \sin(x - y) \big)\\ \sin x \sin y &= \frac{1}{2} \big(\cos (x - y) - \cos(x + y) \big). \end{align}\]
Sum-to-Product Formulas
For any angle \(\theta,\) we have
\[\begin{align} \sin x+\sin y & =2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\ \cos x+\cos y &=2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right). \\ \end{align}\]
Fundamental Trigonometric Identities - Problem Solving (Basic)
If \(\sin x = \cos x = 0.2\), what is the value of \(\cos 2x?\)
Because the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) is not fulfilled, there is no solution of \(x\) and thus there is no possible value for \(\cos 2x \). \(_\square\)
If \(\sin \theta = \frac45\) and \(\theta\) is not in the first quadrant, then find the value of \(\cos \theta\).
Sine is positive only in the first and second quadrants but \(\theta\) is not in the first quadrant, so definitely \(\theta\) must lie in the second quadrant where \(\cos \theta < 0:\)\[\begin{align} \sin^2 \theta + \cos^2 \theta & = 1 \\ \cos^2 \theta & = 1 - \sin^2 \theta \\ & = 1 - \dfrac{16}{25} = \dfrac{9}{25} \\ \Rightarrow \cos \theta & = \pm \dfrac35 \\ \Rightarrow \cos \theta & = - \dfrac35.\ _\square \qquad (\text{since } \cos \theta < 0) \\ \end{align}\]
If \(\sec \theta + \tan \theta = \frac23\), find the value of \(\sin \theta\) and determine the quadrant in which \(\theta\) lies.
We know that \(\sec^2 \theta - \tan^2 \theta = 1 \implies \sec \theta - \tan \theta - \frac{1}{\sec \theta + \tan \theta} = \dfrac{1}{\hspace{2mm} \frac23\hspace{2mm} } = \frac32\).By adding, \((\sec \theta + \tan \theta) + (\sec \theta - \tan \theta) = \frac23 + \frac32 \implies 2 \sec \theta = \frac{13}{6} \implies \sec \theta = \frac{13}{12}\).
By subtracting, \((\sec \theta + \tan \theta) - (\sec \theta - \tan \theta) = \frac23 - \frac32 \implies 2 \tan \theta = \frac{-5}{6} \implies \tan \theta = \frac{-5}{12}\).
From this we get to know that \(\sec \theta\) is positive and \(\tan \theta\) is negative. This is only possible when \(\theta\) lies in the fourth quadrant.
Therefore, \( \sin \theta = \frac{\tan \theta}{\sec \theta} = \frac{-5}{13}.\) \(_\square\)
Find the value of \(2\big(\sin^6 \theta + \cos^6 \theta\big) - 3\big(\sin^4 \theta + \cos^4 \theta\big)\).
We have\[\begin{align} 2\big(\sin^6 \theta + \cos^6 \theta\big) - 3\big(\sin^4 \theta + \cos^4 \theta\big) & = 2\left[\big(\sin^2 \theta\big)^3 + \big(\cos^2 \theta\big)^3\right] - 3\left[\big(\sin^2 \theta\big)^2 + \big(\cos^2 \theta\big)^2\right] \\ & = 2\left[\big(\sin^2 \theta + \cos^2 \theta\big)^3 - 3\sin^2 \theta \cos^2 \theta\big(\sin^2 \theta + \cos^2 \theta\big)\right] - 3\left[\big(\sin^2 \theta + \cos^2 \theta\big)^2 - \sin^2 \theta \cos^2 \theta\right] \\ & = 2\big(1 - 3\sin^2 \theta \cos^2 \theta\big) - 3\big(1 - 2\sin^2 \theta \cos^2 \theta\big) \\ & = 2 - 3 \\ & = -1.\ _\square \end{align}\]
Find the value of
- \(\,(\tan \theta + \cot \theta)^2 \)
- \(\ \sec^2 \theta + \csc^2 \theta.\)
We have\(\begin{align} 1.\ (\tan \theta + \cot \theta)^2 & = \tan^2 \theta + \cot^2 \theta + 2\tan \theta \cot \theta \\ & = \tan^2 \theta + \cot^2 \theta + 2 \\ & = \big(1 + \tan^2 \theta\big) + \big(1 + \cot^2 \theta\big) \\ & = \sec^2 \theta + \csc^2 \theta \end{align}\)
\(\begin{align}
2.\ \sec^2 \theta + \csc^2 \theta & = \dfrac{1}{\cos^2 \theta} + \dfrac{1}{\sin^2 \theta} \\ \\ & = \dfrac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta \cdot \cos^2 \theta} \\ \\ & = \dfrac{1}{\sin^2 \theta \cdot \cos^2 \theta} \\ \\ & = \sec^2 \theta \cdot \csc^2 \theta.\ _\square \end{align}\)
Fundamental Trigonometric Identities - Problem Solving (Intermediate)
In this summary, we collect all of the trigonometric identities that are useful to know for problem-solving.
Find the value of \(\sin^2 \frac{\pi}{10} + \sin^2 \frac{4\pi}{10} + \sin^2 \frac{6 \pi}{10} + \sin^2 \frac{9 \pi}{10}\).
We have\[\begin{align} \sin^2 \dfrac{\pi}{10} + \sin^2 \dfrac{4\pi}{10} + \sin^2 \dfrac{6 \pi}{10} + \sin^2 \dfrac{9 \pi}{10} &=\sin^2 \left(\dfrac{\pi}{10}\right) + \sin^2 \left( \dfrac{\pi}{2} - \dfrac{\pi}{10} \right) + \sin^2 \left(\dfrac{\pi}{2} + \dfrac{\pi}{10} \right) + \sin^2 \left(\pi - \dfrac{\pi}{10} \right) \\ &=\underbrace{\sin^2 \dfrac{\pi}{10} + \cos^2 \dfrac{\pi}{10}}_{1} + \underbrace{\cos^2 \dfrac{\pi}{10} + \sin^2 \dfrac{\pi}{10}}_{1} \\ &=1 + 1 \\ &= 2.\ _\square \end{align}\]
Find the value of \(\cot \frac{\pi}{16} \times \cot \frac{2 \pi}{16} \times \cot \frac{3 \pi}{16} \times \cdots \times \cot \frac{7 \pi}{16}\).
We have\[\begin{align} \cot \dfrac{\pi}{16} \cdot \cot \dfrac{2 \pi}{16} \cdot \cot \dfrac{3 \pi}{16} \times \cdots \times \cot \dfrac{7 \pi}{16} &=\left(\cot \dfrac{\pi}{16} \cdot \cot \dfrac{7 \pi}{16}\right) \cdot \left(\cot \dfrac{2 \pi}{16} \cdot \cot \dfrac{6 \pi}{16} \right) \cdot \left(\cot \dfrac{3 \pi}{16} \cdot \cot \dfrac{5 \pi}{16} \right) \cdot \cot \dfrac{4 \pi}{16} \\ &=\left(\cot \dfrac{\pi}{16} \cdot \cot \Big(\dfrac{\pi}{2} - \dfrac{\pi}{16}\Big)\right) \cdot \left(\cot \dfrac{2 \pi}{16} \cdot \cot \Big(\dfrac{\pi}{2} - \dfrac{2\pi}{16} \Big)\right) \cdot \left(\cot \dfrac{3 \pi}{16} \cdot \cot \Big(\dfrac{\pi}{2} - \dfrac{3\pi}{16} \Big)\right) \cdot \cot \dfrac{\pi}{4} \\ &=\underbrace{\left(\cot \dfrac{\pi}{16} \cdot \tan \dfrac{\pi}{16}\right)}_{1} \cdot \underbrace{\left(\cot \dfrac{2 \pi}{16} \cdot \tan \dfrac{2\pi}{16} \right)}_{1} \cdot \underbrace{\left(\cot \dfrac{3 \pi}{16} \cdot \tan \dfrac{3\pi}{16} \right)}_{1} \cdot 1 \\ &= 1.\ _\square \end{align}\]
If \(3 \sin \theta + 4 \cos \theta = 5\), then find the value of \(4 \sin \theta - 3 \cos \theta\).
Given \(3 \sin \theta + 4 \cos \theta = 5,\) let \(4\sin \theta - 3\cos \theta = a\). On squaring and adding both these equations, we get\[\begin{align} 5^2 & = (3\sin \theta + 4 \cos \theta)^2 \\ a^2 & = (4\sin \theta - 3\cos \theta)^2 \\ \\ 5^2 + a^2 & = (3\sin \theta + 4 \cos \theta)^2 + (4\sin \theta - 3\cos \theta)^2 \\ a^2 + 25 & = 9\sin^2 \theta + 16\cos^2 \theta + 24\sin\theta\cos\theta + 16\sin^2\theta + 9\cos^2\theta - 24\sin\theta\cos\theta \\ a^2 + 25 & = 25(\sin^2 \theta + \cos^2 \theta) \\ a^2 + 25 & = 25 \\ a & = 0 \\ \\ \Rightarrow 4\sin\theta - 3\cos\theta & = 0.\ _\square \end{align}\]
If \(\cos \theta + \sin \theta = \sqrt{2} \cos \theta\), find the value of \(\cos \theta - \sin \theta\).
Given \(\cos \theta + \sin \theta = \sqrt{2}\cos \theta,\) we have \(\big(\sqrt{2} - 1\big)\cos\theta = \sin\theta\). On multiplying both the sides with \(\big(\sqrt2 + 1\big),\) we get\[\begin{align} \big(\sqrt2 + 1\big)\big(\sqrt2 - 1\big)\cos\theta & = \big(\sqrt2 + 1\big)\sin \theta \\ (2 - 1)\cos\theta & = \sqrt2 \sin\theta + \sin\theta \\ \\ \Rightarrow \cos\theta - \sin\theta & = \sqrt2 \sin\theta.\ _\square \end{align}\]
Additional Problems