Sharky Kesa ,
Omkar Kulkarni ,
Pi Han Goh ,
and
4 others
contributed
These formulas are as follows:
sin θ = 2 tan θ 2 1 + tan 2 θ 2 , cos θ = 1 − tan 2 θ 2 1 + tan 2 θ 2 , tan θ = 2 tan θ 2 1 − tan 2 θ 2 . \begin{array}{c}&\sin\theta=\frac{2\tan\frac{\theta}{2}}{1+\tan^{2}\frac{\theta}{2}}, &\cos\theta=\frac{1-\tan^{2}\frac{\theta}{2}}{1+\tan^{2}\frac{\theta}{2}}, &\tan\theta=\frac{2\tan\frac{\theta}{2}}{1-\tan^{2}\frac{\theta}{2}}.\end{array} sin θ = 1 + t a n 2 2 θ 2 t a n 2 θ , cos θ = 1 + t a n 2 2 θ 1 − t a n 2 2 θ , tan θ = 1 − t a n 2 2 θ 2 t a n 2 θ .
We will use the double-angle formula to prove this:
sin θ = 2 sin θ 2 cos θ 2 = 2 sin θ 2 cos θ 2 cos 2 θ 2 + sin 2 θ 2 = 2 tan θ 2 1 + tan 2 θ 2 , tan θ = 2 tan θ 2 1 − tan 2 θ 2 , cos θ = sin θ tan θ = 2 tan θ 2 1 + tan 2 θ 2 2 tan θ 2 1 − tan 2 θ 2 = 1 − tan 2 θ 2 1 + tan 2 θ 2 . □ \begin{aligned}
\sin \theta
& = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\\
& = \frac{ 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}} \\
& = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac {\theta}{2}},\\ \\
\tan \theta
&= \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}},\\ \\
\cos \theta
& = \frac {\sin \theta}{\tan \theta} \\
& = \frac{\frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac {\theta}{2}}}{\hspace{5mm} \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}\hspace{5mm} } \\
& = \frac{1-\tan^{2} \frac{\theta}{2}}{1+\tan^{2} \frac{\theta}{2}}. \ _\square
\end{aligned} sin θ tan θ cos θ = 2 sin 2 θ cos 2 θ = cos 2 2 θ + sin 2 2 θ 2 sin 2 θ cos 2 θ = 1 + tan 2 2 θ 2 tan 2 θ , = 1 − tan 2 2 θ 2 tan 2 θ , = tan θ sin θ = 1 − t a n 2 2 θ 2 t a n 2 θ 1 + t a n 2 2 θ 2 t a n 2 θ = 1 + tan 2 2 θ 1 − tan 2 2 θ . □
2 7 \frac{2}{7} 7 2
3 7 \frac{3}{7} 7 3
4 7 \frac{4}{7} 7 4
5 7 \frac{5}{7} 7 5
Reveal the answer
If 0 < θ < π 2 0 < \theta < \frac{\pi}{2} 0 < θ < 2 π and sin θ = 24 25 , \sin \theta=\frac{24}{25}, sin θ = 25 24 , what is the value of
cos θ 2 sin θ 2 + cos θ 2 ? \frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}+\cos \frac{\theta}{2}}? sin 2 θ + cos 2 θ cos 2 θ ?
The correct answer is:
4 7 \frac{4}{7} 7 4
4
5
6
8
Reveal the answer
If tan 2 3 π 8 \tan^2 \frac{3\pi}{8} tan 2 8 3 π is a root of the polynomial with rational coefficients 2 x 2 − 3 a x + b 2x^2-3ax+b 2 x 2 − 3 a x + b , what is the value of a + b ? a+b? a + b ?
The correct answer is: 6