Hölder's inequality can be proven using Jensen's inequality . In particular, we may seek to prove the following form of Hölder's inequality:
∏ j = 1 z ( ∫ f j ( x ) p j d x ) 1 / p j ≥ ∫ ∏ j = 1 z f j ( x ) d x , \prod _{j=1} ^z \left( \int f _j(x) ^{p_j} \, dx \right) ^{1 /p _j} \ge \int \prod _{j=1} ^z f _j(x) \, dx, j = 1 ∏ z ( ∫ f j ( x ) p j d x ) 1/ p j ≥ ∫ j = 1 ∏ z f j ( x ) d x ,
where 1 p j = λ j , ∑ j = 1 z λ j = 1 , { f 1 ( x i ) p 1 d x } = { a 1 , a 2 , … , a n , } , { f 2 ( x i ) p 2 d x } = { b 1 , b 2 , … , b n } , … , \frac{1}{p _j} = \lambda _j,\ \sum_{j=1}^z \lambda _j = 1,\ \big\{ f _1(x_i) ^{p _1} dx \big\} = \big\{ a_1, a_2, \dots , a_n,\big\},\ \big\{ f _2(x_i) ^{p _2} dx \big\} = \big\{ b_1, b_2, \dots , b_n \big\}, \dots, p j 1 = λ j , ∑ j = 1 z λ j = 1 , { f 1 ( x i ) p 1 d x } = { a 1 , a 2 , … , a n , } , { f 2 ( x i ) p 2 d x } = { b 1 , b 2 , … , b n } , … , and { f z ( x i ) p z d x } = { z 1 , z 2 , … , z n } . \big\{ f _z(x_i) ^{p _z} dx \big\} = \{ z_1, z_2, \dots , z_n \}. { f z ( x i ) p z d x } = { z 1 , z 2 , … , z n } .
First, please refer to the proof presented in the Wikipedia article on Hölder's inequality for the simpler case of ( ∫ f p d μ ) 1 / p ( ∫ g q d μ ) 1 / q ≥ ∫ f g d μ \left( \int f ^p d\mu \right) ^ {1 /p} \left( \int g ^q d\mu \right) ^{1 /q} \ge \int fg\, d\mu ( ∫ f p d μ ) 1/ p ( ∫ g q d μ ) 1/ q ≥ ∫ f g d μ , where 1 p + 1 q = 1 \frac {1} {p} +\frac {1} {q} = 1 p 1 + q 1 = 1 .
Show/hide proof from Wikipedia
Recall the Jensen's inequality for the convex function x p x^p x p ( ( ( it is convex because obviously p ≥ 1 ) : p\geq1): p ≥ 1 ) : ∫ h d ν ≤ ( ∫ h p d ν ) 1 p \int h\,d\nu\leq\left(\int h^pd\nu \right )^{\frac{1}{p}} ∫ h d ν ≤ ( ∫ h p d ν ) p 1 , where ν \nu ν is any probability distribution and h h h is any ν \nu ν -measurable function. Let μ \mu μ be any measure, and ν \nu ν the distribution whose density w.r.t. μ \mu μ is proportional to g q g^q g q , i.e. d ν = g q ∫ g q d μ d μ d\nu = \frac{g^q}{\int g^q\,d\mu}d\mu d ν = ∫ g q d μ g q d μ . Then we have, using 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p 1 + q 1 = 1 , p ( 1 − q ) + q = 0 p(1-q)+q=0 p ( 1 − q ) + q = 0 , and letting h = f g 1 − q h=fg^{1-q} h = f g 1 − q gives
∫ f g d μ = ( ∫ g q d μ ) ∫ f g 1 − q ⏟ h g q ∫ g q d μ d μ ⏟ d ν ≤ ( ∫ g q d μ ) ( ∫ f p g p ( 1 − q ) ⏟ h p g q ∫ g q d μ d μ ⏟ d ν ) 1 p = ( ∫ g q d μ ) ( ∫ f p ∫ g q d μ d μ ) 1 p . \int fg\,d\mu = \left (\int g^q\,d\mu \right )\int \underbrace{fg^{1-q}}_h\underbrace{\frac{g^q}{\int g^q\,d\mu}d\mu}_{d\nu} \leq \left (\int g^qd\mu \right ) \left (\int \underbrace{f^pg^{p(1-q)}}_{h^p}\underbrace{\frac{g^q}{\int g^q\,d\mu}\,d\mu}_{d\nu} \right )^{\frac{1}{p}} = \left (\int g^q\,d\mu \right ) \left (\int \frac{f^p}{\int g^q\,d\mu}\,d\mu \right )^{\frac{1}{p}}. ∫ f g d μ = ( ∫ g q d μ ) ∫ h f g 1 − q d ν ∫ g q d μ g q d μ ≤ ( ∫ g q d μ ) ∫ h p f p g p ( 1 − q ) d ν ∫ g q d μ g q d μ p 1 = ( ∫ g q d μ ) ( ∫ ∫ g q d μ f p d μ ) p 1 .
Finally, we get ∫ f g d μ ≤ ( ∫ f p d μ ) 1 p ( ∫ g q d μ ) 1 q \int fg\,d\mu \leq \left(\int f^p\,d\mu \right )^{\frac{1}{p}} \left(\int g^q\,d\mu \right )^{\frac{1}{q}} ∫ f g d μ ≤ ( ∫ f p d μ ) p 1 ( ∫ g q d μ ) q 1 . □ _\square □
Next, we prove that ( ∫ f p d μ ) 1 / p ( ∫ g q d μ ) 1 / q ≥ ( ∫ ( f g ) r d μ ) 1 / r \left( \int f ^p d\mu \right) ^ {1 /p} \left( \int g ^q d\mu \right) ^{1 /q} \ge \left( \int (fg)^r d\mu \right) ^{1 /r} ( ∫ f p d μ ) 1/ p ( ∫ g q d μ ) 1/ q ≥ ( ∫ ( f g ) r d μ ) 1/ r for any p p p , q > 0 q \gt 0 q > 0 , where 1 p + 1 q = 1 r \frac {1} {p} +\frac {1} {q} = \frac {1} {r} p 1 + q 1 = r 1 .
Because r p + r q = r r = 1 \frac {r} {p} +\frac {r} {q} = \frac {r} {r} = 1 p r + q r = r r = 1 , therefore ( ∫ F p / r d μ ) r / p ( ∫ G q / r d μ ) r / q ≥ ∫ F G d μ \textstyle \left( \int F ^{p /r} d\mu \right) ^ {r /p} \left( \int G ^{q /r} d\mu \right) ^{r /q} \ge \int FG\, d\mu ( ∫ F p / r d μ ) r / p ( ∫ G q / r d μ ) r / q ≥ ∫ FG d μ , using the proof above for the simpler case.
Now, let f = F 1 / r f = F ^{1/r} f = F 1/ r and g = G 1 / r g = G ^{1/r} g = G 1/ r . With some algebra, we can see that ( ( ∫ f p d μ ) r / p ( ∫ g q d μ ) r / q ) 1 / r ≥ ( ∫ f r g r d μ ) 1 / r \textstyle \left( \left( \int f ^p d\mu \right) ^ {r /p} \left( \int g ^q d\mu \right) ^{r /q} \right) ^{1/r} \ge \left( \int f ^r g ^r d\mu \right) ^{1 /r} ( ( ∫ f p d μ ) r / p ( ∫ g q d μ ) r / q ) 1/ r ≥ ( ∫ f r g r d μ ) 1/ r .
Given the above, we can show that
( ∫ f 1 p 1 d μ ) 1 / p 1 ( ∫ f 2 p 2 d μ ) 1 / p 2 ( ∫ f 3 p 3 d μ ) 1 / p 3 ≥ ( ∫ ( f 1 f 2 ) 1 ( 1 / p 1 ) + ( 1 / p 2 ) d μ ) ( 1 / p 1 ) + ( 1 / p 2 ) ( ∫ f 3 p 3 d μ ) 1 / p 3 ≥ ( ∫ ( f 1 f 2 f 3 ) 1 ( 1 / p 1 ) + ( 1 / p 2 ) + ( 1 / p 3 ) d μ ) ( 1 / p 1 ) + ( 1 / p 2 ) + ( 1 / p 3 ) . \left( \int f _1 ^{p _1} d\mu \right) ^{1 /p _1} \left( \int f _2 ^{p _2} d\mu \right) ^{1 /p _2} \left( \int f _3 ^{p _3} d\mu \right) ^{1 /p _3}
\ge \left( \int (f _1 f _2) ^{\frac {1} {(1 /p _1) +(1 /p _2)}} d\mu \right) ^{(1 /p _1) + (1 /p_2)} \left( \int f _3 ^{p _3} d\mu \right) ^{1 /p _3}
\ge \left( \int (f _1 f _2 f _3) ^{\frac {1} {(1 /p _1) +(1 /p _2) +(1 /p _3)}} d\mu \right) ^{(1 /p _1) +(1 /p_2) +(1 /p _3)}. ( ∫ f 1 p 1 d μ ) 1/ p 1 ( ∫ f 2 p 2 d μ ) 1/ p 2 ( ∫ f 3 p 3 d μ ) 1/ p 3 ≥ ( ∫ ( f 1 f 2 ) ( 1/ p 1 ) + ( 1/ p 2 ) 1 d μ ) ( 1/ p 1 ) + ( 1/ p 2 ) ( ∫ f 3 p 3 d μ ) 1/ p 3 ≥ ( ∫ ( f 1 f 2 f 3 ) ( 1/ p 1 ) + ( 1/ p 2 ) + ( 1/ p 3 ) 1 d μ ) ( 1/ p 1 ) + ( 1/ p 2 ) + ( 1/ p 3 ) .
In fact, define s ( m ) = ∑ j = 1 m 1 p j . s(m) = \sum_{j=1}^{m} \frac{1}{p _j}. s ( m ) = ∑ j = 1 m p j 1 . Given
∏ j = 1 m − 1 ( ∫ f j p j d μ ) 1 / p j ≥ ( ∫ ( ∏ j = 1 m − 1 f j ) 1 s ( m − 1 ) d μ ) s ( m − 1 ) , \prod _{j=1}^{m-1} \left( \int f _j ^{p _j} d\mu \right) ^{1 /p _j} \ge \left( \int \left( \prod_{j=1}^{m-1} f _j \right) ^{\frac {1} {s(m-1)}} d\mu \right) ^{s(m-1)}, j = 1 ∏ m − 1 ( ∫ f j p j d μ ) 1/ p j ≥ ∫ ( j = 1 ∏ m − 1 f j ) s ( m − 1 ) 1 d μ s ( m − 1 ) ,
we have
∏ j = 1 m − 1 ( ∫ f j p j d μ ) 1 / p j ( ∫ f m p m d μ ) 1 / p m ≥ ( ∫ ( ∏ j = 1 m − 1 f j ) 1 s ( m − 1 ) d μ ) s ( m − 1 ) ( ∫ f m p m d μ ) 1 / p m ≥ ( ∫ ( ∏ j = 1 m f j ) 1 s ( m ) d μ ) s ( m ) . \prod _{j=1}^{m-1} \left( \int f _j ^{p _j} d\mu \right) ^{1 /p _j} \left( \int f _m ^{p _m} d\mu \right) ^ {1 /p _m}
\ge \left( \int \left( \prod_{j=1}^{m-1} f _j \right) ^{\frac {1} {s(m-1)}} d\mu \right) ^{s(m-1)} \left( \int f _m ^{p _m} d\mu \right) ^ {1 /p _m}
\ge \left( \int \left( \prod_{j=1}^{m} f _j \right) ^{\frac {1} {s(m)}} d\mu \right) ^{s(m)}. j = 1 ∏ m − 1 ( ∫ f j p j d μ ) 1/ p j ( ∫ f m p m d μ ) 1/ p m ≥ ∫ ( j = 1 ∏ m − 1 f j ) s ( m − 1 ) 1 d μ s ( m − 1 ) ( ∫ f m p m d μ ) 1/ p m ≥ ∫ ( j = 1 ∏ m f j ) s ( m ) 1 d μ s ( m ) .
Therefore, by induction,
∏ j = 1 z ( ∫ f j p j d μ ) 1 / p j ≥ ( ∫ ( ∏ j = 1 z f j ) 1 s ( z ) d μ ) s ( z ) . \prod _{j=1}^{z} \left( \int f _j ^{p _j} d\mu \right) ^{1 /p _j} \ge \left( \int \left( \prod_{j=1}^{z} f _j \right) ^{\frac {1} {s(z)}} d\mu \right) ^{s(z)}. j = 1 ∏ z ( ∫ f j p j d μ ) 1/ p j ≥ ∫ ( j = 1 ∏ z f j ) s ( z ) 1 d μ s ( z ) .
In the case that s ( z ) = 1 s(z) = 1 s ( z ) = 1 , we arrive at the original claim that we've sought to prove.
Hölder's inequality may also be proven using Young's inequality . Young's inequality states that if p , q p,q p , q are positive reals satisfying 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p 1 + q 1 = 1 , then
a b ≤ a p p + b q q ab \leq \frac{a^p}{p}+\frac{b^q}{q} ab ≤ p a p + q b q
for all nonnegative reals a , b a,b a , b .
It follows from the concavity of the logarithm function and Jensen's inequality; in particular,
log ( 1 p a p + 1 q b q ) ≥ 1 p log a p + 1 q log b q = log a + log b = log a b \log\left(\frac{1}{p}a^{p}+\frac{1}{q}b^q\right) \geq \frac{1}{p}\log a^p+\frac{1}{q}\log b^q=\log a+\log b=\log ab log ( p 1 a p + q 1 b q ) ≥ p 1 log a p + q 1 log b q = log a + log b = log ab
and exponentiating gives Young's inequality.