Symbolic Operators
This wiki is incomplete.
Newly Defined Functions - Basic
Sometimes if we are going to use a particular set of operations frequently, it can be useful to give that set of operations an abbreviated symbol to stand for the whole.
For example, if we define \( \uparrow \) to mean \( \uparrow x = x^2 + 1 \), then what is the value of \( \uparrow 10 + \uparrow 3 \)?
Given the definition, \( \uparrow 10 + \uparrow 3 = \big((10)^2 + 1\big) + \big((3^2) + 1 \big) = 111 \).
\[x * y = \frac{1}{x} + \frac{1}{y}, \quad x \# y = \frac{x+y}{x-y}\]
Let the operations \(\#\) and \(*\) be defined as described above.
Find the value of \(k\) such that
\[(22 * k) \# (k * 33) = 27.\]
Suppose we define the function \(@\) such that \(a @ b = 3a - 2b + a b\).
What is the value of \(10@4 - 4@10?\)
If \( a \oplus b = \left( a+b \right) ^{ 2 } \) , what is the value of \( 3\oplus 1\)?
Newly Defined Functions - Intermediate
Consider the arithmetic operations \(\blacktriangle\) and \(\blacktriangledown\) defined by
\[\large \begin{align} a \blacktriangle b & = \begin{cases} a & \text{ if } \lvert a \rvert \geq \lvert b \rvert \\ b & \text{ if } \lvert a \rvert < \lvert b \rvert \end{cases} \\ a\blacktriangledown b & = \begin{cases} a & \text{ if } \lvert a \rvert \leq \lvert b \rvert \\ b & \text{ if } \lvert a \rvert > \lvert b \rvert \end{cases} \end{align} \]
How many integers \(k\) are there such that \((-20 \blacktriangle 9) \blacktriangledown (k \blacktriangle 5)=5?\)
For any two real numbers \(a\) and \(b\), the operation \(\oplus\) defined by \(a\oplus b=ab+1\) is \(\text{____________________}.\)