In the diagram, let point A revolve to points B and C, and let the angles α and β be defined as follows:
∠AOB=α,∠BOC=β.
Also, let both CD and FG be perpendicular to OA, and let E be a point on CD such that ∣ED∣=∣FG∣.
Then the formula for cosine-sum cos(α+β), which is ∣OC∣∣OD∣, can be obtained as follows:
cos(α+β)=∣OC∣∣OD∣=∣OC∣∣OG∣−∣OC∣∣EF∣=∣OF∣∣OG∣⋅∣OC∣∣OF∣−∣CF∣∣EF∣⋅∣OC∣∣CF∣(since ∣OD∣=∣OG∣−∣EF∣)=cosα⋅cosβ−sinα⋅sinβ.
The cosine-difference formula can be obtained from the cosine-sum formula by replacing β with −β, and using cos(−β)=cosβ and sin(−β)=−sinβ:
cos(α+β)⇒cos(α−β)=cosα⋅cosβ−sinα⋅sinβ=cosα⋅cos(−β)−sinα⋅sin(−β)=cosα⋅cosβ+sinα⋅sinβ.
In summary, we have the following two formulas of cosine-sum and cosine-difference:
Cosine-sum formula:
cos(α+β)=cosα⋅cosβ−sinα⋅sinβ,
Cosine-difference formula:
cos(α−β)=cosα⋅cosβ+sinα⋅sinβ.
What is cos75∘?
From cosine-sum formula, we have
cos75∘=cos(45∘+30∘)=cos45∘⋅cos30∘−sin45∘⋅sin30∘=22⋅23−22⋅21=46−42=46−2. □
What is cos15∘?
From cosine-difference formula, we have
cos15∘=cos(45∘−30∘)=cos45∘⋅cos30∘+sin45∘⋅sin30∘=22⋅23+22⋅21=46+42=46+2. □
What is cos105∘?
From cosine-sum formula, cos105∘ is
cos105∘=cos(60∘+45∘)=cos60∘⋅cos45∘−sin60∘⋅sin45∘=21⋅22−23⋅22=42−46=42−6. □
Simplify
cos140∘⋅cos50∘+sin140∘⋅sin50∘.
From cosine-difference formula, we have
cos140∘⋅cos50∘+sin140∘⋅sin50∘=cos(140∘−50∘)=cos90∘=0. □
If sinα=1413 and sinβ=1411 for 0<α<2π and 0<β<2π, what is α+β?
Since sin2x+cos2x=1,
cosαcosβ=1−sin2α=1−142132=1433,=1−sin2β=1−142112=1453.
Thus, from cosine-sum formula, we have
cos(α+β)=cosα⋅cosβ−sinα⋅sinβ=1433×1453−1413×1411=−21.
Hence, since 0<α+β<π, we can get α+β as follows:
cos(α+β)⇒α+β=−21=32π. □