Use the power reduction identities to express cos 2 θ sin 2 θ \cos^2 \theta \sin^2 \theta cos 2 θ sin 2 θ using only cosines and sines to the first power.
We have
( cos θ sin θ ) 2 = 1 4 ( 2 cos θ sin θ ) 2 = 1 4 ( sin 2 ( 2 θ ) ) = 1 4 ( 1 − cos ( 4 θ ) 2 ) = 1 8 ( 1 − cos ( 4 θ ) ) . □ \begin{aligned}
\left(\cos\theta\sin\theta\right)^{2} &=\frac{1}{4}\left(2\cos\theta\sin\theta\right)^{2}\\
&=\frac{1}{4}\left(\sin^{2}(2\theta)\right)\\
&=\frac{1}{4}\left(\frac{1-\cos(4\theta)}{2}\right)\\
&=\frac{1}{8}\big(1-\cos(4\theta)\big).\ _\square
\end{aligned} ( cos θ sin θ ) 2 = 4 1 ( 2 cos θ sin θ ) 2 = 4 1 ( sin 2 ( 2 θ ) ) = 4 1 ( 2 1 − cos ( 4 θ ) ) = 8 1 ( 1 − cos ( 4 θ ) ) . □
Use the power reduction identities to express cos 4 θ \cos^4 \theta cos 4 θ using only cosines and sines to the first power.
We have
cos 4 θ = ( cos 2 θ ) 2 = ( 1 + cos ( 2 θ ) 2 ) = 1 + 2 cos ( 2 θ ) + cos 2 ( 2 θ ) 4 = 1 + 2 cos ( 2 θ ) + 1 + cos ( 4 θ ) 2 4 = 2 + 4 cos ( 2 θ ) + 1 + cos ( 4 θ ) 8 = 1 8 ( cos ( 4 θ ) + 4 cos ( 2 θ ) + 3 ) . □ \begin{aligned}
\cos^{4}\theta &=\left(\cos^{2}\theta\right)^{2} \\
&=\left(\frac{1+\cos(2\theta)}{2}\right)\\
&=\frac{1+2\cos(2\theta)+\cos^{2}(2\theta)}{4}\\
&=\frac{1+2\cos(2\theta)+\frac{1+\cos(4\theta)}{2}}{4}\\
&=\frac{2+4\cos(2\theta)+1+\cos(4\theta)}{8}\\
&=\frac{1}{8}\big(\cos(4\theta)+4\cos(2\theta)+3\big).\ _\square
\end{aligned} cos 4 θ = ( cos 2 θ ) 2 = ( 2 1 + cos ( 2 θ ) ) = 4 1 + 2 cos ( 2 θ ) + cos 2 ( 2 θ ) = 4 1 + 2 cos ( 2 θ ) + 2 1 + c o s ( 4 θ ) = 8 2 + 4 cos ( 2 θ ) + 1 + cos ( 4 θ ) = 8 1 ( cos ( 4 θ ) + 4 cos ( 2 θ ) + 3 ) . □
Use the half-angle formulas to evaluate cos ( π 12 ) \cos \left( \frac{\pi}{12} \right) cos ( 12 π ) and sin ( π 12 ) . \sin \left( \frac{\pi}{12} \right). sin ( 12 π ) .
In the formulas cos ( θ 2 ) ± 1 + cos θ 2 \cos \left( \frac{\theta}{2} \right) \pm \sqrt{ \frac{1 + \cos\theta}{2} } cos ( 2 θ ) ± 2 1 + c o s θ and sin ( θ 2 ) ± 1 − cos θ 2 , \sin \left( \frac{\theta}{2} \right) \pm \sqrt{ \frac{1 - \cos\theta}{2} }, sin ( 2 θ ) ± 2 1 − c o s θ , we replace θ \theta θ with π 6 : \frac{\pi}{6}: 6 π :
cos ( π 12 ) = ± 1 + cos ( π 6 ) 2 = ± 2 + 3 2 \begin{aligned}
\cos\left(\frac{\pi}{12}\right) &=\pm\sqrt{\frac{1+\cos\left(\frac{\pi}{6}\right)}{2}} \\
& =\pm\frac{\sqrt{2+\sqrt{3}}}{2}
\end{aligned} cos ( 12 π ) = ± 2 1 + cos ( 6 π ) = ± 2 2 + 3
sin ( π 12 ) = ± 1 − cos ( π 6 ) 2 = ± 2 − 3 2 . \begin{aligned}
\sin\left(\frac{\pi}{12}\right) &=\pm\sqrt{\frac{1-\cos\left(\frac{\pi}{6}\right)}{2}} \\
&=\pm\frac{\sqrt{2-\sqrt{3}}}{2}.
\end{aligned} sin ( 12 π ) = ± 2 1 − cos ( 6 π ) = ± 2 2 − 3 .
As π 12 \frac{\pi}{12} 12 π lies in the first quadrant, we assign positive values to sin ( π 12 ) \sin\left(\frac{\pi}{12}\right) sin ( 12 π ) and cos ( π 12 ) \cos\left(\frac{\pi}{12}\right) cos ( 12 π ) .
Hence cos ( π 12 ) = 2 + 3 2 \cos\left(\frac{\pi}{12}\right)=\frac{\sqrt{2+\sqrt{3}}}{2} cos ( 12 π ) = 2 2 + 3 and sin ( π 12 ) = 2 − 3 2 \sin\left(\frac{\pi}{12}\right)=\frac{\sqrt{2-\sqrt{3}}}{2} sin ( 12 π ) = 2 2 − 3 . □ _\square □
Verify the identities
tan ( θ 2 ) = 1 − cos θ sin θ , tan ( θ 2 ) = sin θ 1 + cos θ . \tan \left( \frac{\theta}{2} \right) = \frac{1-\cos \theta }{\sin\theta},\quad \tan \left( \frac{\theta}{2} \right) = \frac{\sin\theta}{1+\cos \theta }. tan ( 2 θ ) = sin θ 1 − cos θ , tan ( 2 θ ) = 1 + cos θ sin θ .
We have
tan ( θ 2 ) = ± 1 − cos θ 1 + cos θ . \begin{aligned}
\tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos\theta}{1 + \cos\theta} }.
\end{aligned} tan ( 2 θ ) = ± 1 + cos θ 1 − cos θ .
Multiply both numerator and denominator by 1 − cos θ \sqrt{1-\cos\theta} 1 − cos θ
tan ( θ 2 ) = ± ( 1 − cos θ ) 2 1 − cos 2 θ = ± ( 1 − cos θ ) 2 sin 2 θ = 1 − cos θ sin θ . \begin{aligned}
\tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{(1 - \cos \theta)^2}{1 - \cos^2\theta} }\\ &=\pm \sqrt{ \frac{(1 - \cos \theta)^2}{\sin^2\theta} }\\ &=\frac{1-\cos\theta}{\sin \theta}.
\end{aligned} tan ( 2 θ ) = ± 1 − cos 2 θ ( 1 − cos θ ) 2 = ± sin 2 θ ( 1 − cos θ ) 2 = sin θ 1 − cos θ .
Similarly, by multiplying numerator and denominator by 1 + cos θ \sqrt{1+\cos \theta} 1 + cos θ ,
tan ( θ 2 ) = ± 1 − cos 2 θ ( 1 + cos θ ) 2 = ± sin 2 θ ( 1 + cos θ ) 2 = sin θ 1 + cos θ . □ \begin{aligned}
\tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos^2\theta}{(1 + \cos\theta)^2} }\\ &=\pm \sqrt{ \frac{\sin^2\theta}{(1 + \cos\theta)^2} }\\ &=\frac{\sin \theta}{1+\cos \theta}.\ _\square
\end{aligned} tan ( 2 θ ) = ± ( 1 + cos θ ) 2 1 − cos 2 θ = ± ( 1 + cos θ ) 2 sin 2 θ = 1 + cos θ sin θ . □