Trigonometric Power Reduction Identities
The trigonometric power reduction identities allow us to rewrite expressions involving trigonometric terms with trigonometric terms of smaller powers. This becomes important in several applications such as integrating powers of trigonometric expressions in calculus.
Contents
Identities
Power Reduction Identities
For any angle \(\theta\),
\[\cos^2 \theta = \frac{1 + \cos(2\theta)}{2},\quad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}.\]
Proof:
Subtracting the two identities gives
\[\cos(2\theta) = \cos^2 \theta - \sin^2 \theta.\]
Then we have
\[\begin{align} \dfrac{1 + \cos(2\theta)}{2}& = \dfrac{1+\cos^2 \theta - \sin^2 \theta}{2}\\ & = \dfrac{\big(\sin^2 \theta + \cos^2 \theta\big) + \cos^2 \theta - \sin^2 \theta}{2}\\ & = \dfrac{2 \cos^2 \theta}{2}\\\\ & = \cos^2 \theta.\ _\square \end{align}\]
Half-angle Formulas
Using the power reduction formulas, we can derive the following half-angle formulas:
Half-angle Formulas
For any angle \(\theta\),
\[ \begin{align} \cos \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 + \cos\theta}{2} }\\ \sin \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos\theta}{2} }\\ \tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos\theta}{1 + \cos\theta} }. \end{align}\]
Proof:
From the power reduction formulas, we have \(\cos^{2}\theta=\frac{1+\cos(2\theta)}{2}\). Replacing \(\theta\) with \(\frac{\theta}{2}\), we obtain
\[\begin{align} \cos^{2}\left(\frac{\theta}{2}\right) &=\frac{1+\cos\theta}{2}\\ \cos\left(\frac{\theta}{2}\right) &=\pm\sqrt{\frac{1+\cos\theta}{2}}.\ _\square \end{align}\]
Examples
Use the power reduction identities to express \( \cos^2 \theta \sin^2 \theta \) using only cosines and sines to the first power.
We have
\[ \begin{align} \left(\cos\theta\sin\theta\right)^{2} &=\frac{1}{4}\left(2\cos\theta\sin\theta\right)^{2}\\ &=\frac{1}{4}\left(\sin^{2}(2\theta)\right)\\ &=\frac{1}{4}\left(\frac{1-\cos(4\theta)}{2}\right)\\ &=\frac{1}{8}\big(1-\cos(4\theta)\big).\ _\square \end{align}\]
Use the power reduction identities to express \( \cos^4 \theta \) using only cosines and sines to the first power.
We have
\[\begin{align} \cos^{4}\theta &=\left(\cos^{2}\theta\right)^{2} \\ &=\left(\frac{1+\cos(2\theta)}{2}\right)\\ &=\frac{1+2\cos(2\theta)+\cos^{2}(2\theta)}{4}\\ &=\frac{1+2\cos(2\theta)+\frac{1+\cos(4\theta)}{2}}{4}\\ &=\frac{2+4\cos(2\theta)+1+\cos(4\theta)}{8}\\ &=\frac{1}{8}\big(\cos(4\theta)+4\cos(2\theta)+3\big).\ _\square \end{align}\]
Use the half-angle formulas to evaluate \(\cos \left( \frac{\pi}{12} \right) \) and \(\sin \left( \frac{\pi}{12} \right).\)
In the formulas \(\cos \left( \frac{\theta}{2} \right) \pm \sqrt{ \frac{1 + \cos\theta}{2} }\) and \(\sin \left( \frac{\theta}{2} \right) \pm \sqrt{ \frac{1 - \cos\theta}{2} },\) we replace \(\theta\) with \(\frac{\pi}{6}:\)
\[\begin{align} \cos\left(\frac{\pi}{12}\right) &=\pm\sqrt{\frac{1+\cos\left(\frac{\pi}{6}\right)}{2}} \\ & =\pm\frac{\sqrt{2+\sqrt{3}}}{2} \end{align}\]
\[\begin{align} \sin\left(\frac{\pi}{12}\right) &=\pm\sqrt{\frac{1-\cos\left(\frac{\pi}{6}\right)}{2}} \\ &=\pm\frac{\sqrt{2-\sqrt{3}}}{2}. \end{align}\]
As \(\frac{\pi}{12}\) lies in the first quadrant, we assign positive values to \(\sin\left(\frac{\pi}{12}\right)\) and \(\cos\left(\frac{\pi}{12}\right)\).
Hence \(\cos\left(\frac{\pi}{12}\right)=\frac{\sqrt{2+\sqrt{3}}}{2}\) and \(\sin\left(\frac{\pi}{12}\right)=\frac{\sqrt{2-\sqrt{3}}}{2}\). \(_\square\)
Verify the identities
\[\tan \left( \frac{\theta}{2} \right) = \frac{1-\cos \theta }{\sin\theta},\quad \tan \left( \frac{\theta}{2} \right) = \frac{\sin\theta}{1+\cos \theta }.\]
We have
\[\begin{align} \tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos\theta}{1 + \cos\theta} }. \end{align}\]
Multiply both numerator and denominator by \(\sqrt{1-\cos\theta}\)
\[\begin{align} \tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{(1 - \cos \theta)^2}{1 - \cos^2\theta} }\\ &=\pm \sqrt{ \frac{(1 - \cos \theta)^2}{\sin^2\theta} }\\ &=\frac{1-\cos\theta}{\sin \theta}. \end{align}\]
Similarly, by multiplying numerator and denominator by \(\sqrt{1+\cos \theta}\),
\[\begin{align} \tan \left( \frac{\theta}{2} \right) &= \pm \sqrt{ \frac{1 - \cos^2\theta}{(1 + \cos\theta)^2} }\\ &=\pm \sqrt{ \frac{\sin^2\theta}{(1 + \cos\theta)^2} }\\ &=\frac{\sin \theta}{1+\cos \theta}.\ _\square \end{align}\]