Apollonius's Theorem
Apollonius's theorem is an elementary geometry theorem relating the length of a median of a triangle to the lengths of its sides. While most of the world refers to it as it is, in East Asia, the theorem is usually referred to as Pappus's theorem or midpoint theorem. It can be proved by Pythagorean theorem from the cosine rule as well as by vectors. The theorem is named after a Greek mathematician Apollonius of Perga.
Contents
Apollonius's Theorem
For triangle \(ABC\) with \(M\) being the midpoint of \(\overline{BC}\), the following equation holds:
\[\overline{AB}^2+\overline{AC}^2=2\left\{\overline{AM}^2+\left(\frac{\overline{BC}}{2}\right)^2\right\}.\]
Proof by Pythagorean Theorem
Prove that triangle \(ABC,\) with \(M\) being the midpoint of \(\overline{BC},\) satisfies Apollonius' theorem by using only the Pythagorean theorem.
Let \(H\) be the foot of perpendicular from \(A\) to \(\overline{BC}\).
It is clear that
\[\begin{align} \overline{BM}=\overline{CM}&=\frac{\overline{BC}}{2} \\\\ \overline{BH}+\overline{CH}&=\overline{BC}. \end{align}\]
Using the Pythagorean theorem, we get
\[\begin{align} \overline{AB}^2&=\overline{AH}^2+\overline{BH}^2 \\ \overline{AC}^2&=\overline{AH}^2+\overline{CH}^2 \\ \overline{AM}^2&=\overline{AH}^2+\overline{MH}^2. \end{align}\]
From these, we can conclude that
\[\begin{align} \overline{AB}^2+\overline{AC}^2 &=2\overline{AH}^2+\overline{BH}^2+\overline{CH}^2 \\ &=2\overline{AH}^2+2\overline{MH}^2+\overline{BH}^2-\overline{MH}^2+\overline{CH}^2-\overline{MH}^2 \\ &=2\overline{AM}^2+\left(\overline{BH}+\overline{MH}\right)\left(\overline{BH}-\overline{MH}\right)+\left(\overline{CH}+\overline{MH}\right)\left(\overline{CH}-\overline{MH}\right) \\ &=2\overline{AM}^2+\left(\overline{BH}+\overline{MH}\right)\cdot\overline{BM}+\overline{CM}\cdot\left(\overline{CH}-\overline{MH}\right) \\ &=2\overline{AM}^2+\frac{\overline{BC}^2}{2} \\ &=2\left\{\overline{AM}^2+\left(\frac{\overline{BC}}{2}\right)^2\right\}.\ _\square \end{align}\]
Proof by Cosine Rule
Prove that triangle \(ABC,\) with \(M\) being the midpoint of \(\overline{BC},\) satisfies Apollonius's theorem by using only the cosine rule (law of cosines).
Using the cosine rule, we get
\[\begin{align} \overline{AB}^2 & =\overline{BM}^2+\overline{AM}^2-2\overline{AM}\cdot\overline{BM}\cos\angle AMB \\\\ \overline{AC}^2 & =\overline{CM}^2+\overline{AM}^2-2\overline{AM}\cdot\overline{CM}\cos\angle AMC \\ & = \overline{BM}^2+\overline{AM}^2+2\overline{AM}\cdot\overline{BM}\cos\angle AMB. \qquad(\text{since } \angle AMB+\angle AMC=\pi) \end{align}\]
Adding these two gives
\[\begin{align} \overline{AB}^2+\overline{AC}^2 & = 2\overline{AM}^2+2\overline{BM}^2 \\ & = 2\left\{\overline{AM}^2+\left(\frac{\overline{BC}}{2}\right)^2\right\}.\ _\square \end{align}\]
Proof by Vectors
Prove that triangle \(ABC,\) with \(M\) being the midpoint of \(\overline{BC},\) satisfies Apollonius's theorem only by using elementary vector operations.
Let \(A\) be the origin of a Cartesian coordinate system.
Defining \(\overrightarrow{AB}=\vec{b}\) and \(\overrightarrow{AC}=\vec{c},\) it's clear that \(\overrightarrow{BC}=\vec{c}-\vec{b}\) and \(\overrightarrow{AM}=\frac{\vec{b}+\vec{c}}{2}.\)
Therefore,
\[\begin{align} \overline{AB}^2+\overline{AC}^2 &= |\vec{b}|^2+|\vec{c}|^2 \\ &= \dfrac{1}{2}\big(2|\vec{b}|^2+2|\vec{c}|^2\big) \\ &= \dfrac{1}{2}\big(|\vec{b}|^2+|\vec{c}|^2+2\vec{b}\cdot\vec{c}+|\vec{b}|^2+|\vec{c}|^2-2\vec{b}\cdot\vec{c}\big) \\ &= \dfrac{1}{2}\left\{\big(\vec{b}+\vec{c})^2+(\vec{c}-\vec{b}\big)^2\right\} \\ &= \dfrac{1}{2}\left(4\overline{AM}^2+\overline{BC}^2\right) \\ &= 2\left\{\overline{AM}^2+\left(\dfrac{\overline{BC}}{2}\right)^2\right\}.\ _\square \end{align}\]
Relations with Other Theorems
Apollonius's theorem is a special case of Stewart's theorem and also a generalization of the Pythagorean theorem.
Substitute \(\overline{BP}=\overline{CP}\) into Stewart's theorem, \(\overline{CP}\cdot\overline{AB}^2+\overline{BP}\cdot\overline{AC}^2=\left(\overline{BP}+\overline{CP}\right)\left(\overline{AP}^2+\overline{BP}\cdot\overline{CP}\right)\), and you get
\[\overline{AB}^2+\overline{AC}^2=2\left(\overline{AP}^2+\overline{BP}^2\right).\]
Also, substituting \(\angle BAC=\frac{\pi}{2}\) and \(\overline{AM}=\frac{\overline{BC}}{2}\) into Apollonius's theorem, you get
\[\begin{align} \overline{AB}^2+\overline{AC}^2 & =2\left\{\left(\frac{\overline{BC}}{2}\right)^2+\left(\frac{\overline{BC}}{2}\right)^2\right\} \\ & = \overline{BC}^2.\ _\square \end{align}\]
We can also obtain the Carnot's theorem, which reads
\[PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3PG^2\]
for any point \(P.\) Look for the Centroid of a Triangle wiki for proof.
Examples
Triangle \(ABC\) has side lengths \(\overline{AB}=2\sqrt{3}\) and \(\overline{BC}=2,\) as shown. \(D\) is the midpoint of \(\overline{BC},\) satisfying \(\overline{AD}=\sqrt{7}.\)
Let \(E\) be the point of intersection between \(\overline{AB}\) and the bisector of \(\angle ACB.\) \(\overline{CE}\) meets with \(\overline{AD}\) at point \(P,\) and the bisector of \(\angle APE\) meets with \(\overline{AB}\) at point \(R.\) An extension of \(\overline{PR}\) meets with \(\overline{BC}\) at point \(Q.\)
Given that the area of \(\triangle PQC\) is \(a+b\sqrt{7}\) times larger than that of \(\triangle PRE\) for some rational numbers \(a\) and \(b,\) find the value of \(ab.\)
This problem is a part of <Grade 10 CSAT Mock Test> series.
Triangle \(ABC\) with its centroid at \(G\) has side lengths \(AB=15, BC=18,AC=25\). \(D\) is the midpoint of \(BC\).
The length of \(GD\) can be expressed as \( \frac{ a \sqrt{d} } { b} \), where \(a\) and \(b\) are coprime positive integers and \(d\) is a square-free positive integer.
Find \( a + b + d + 1 \).