Although Descartes' circle theorem is easily stated, it is not easy to prove. Below is a proof via trigonometry:
We start with the trigonometric identity that states if α+β+γ=2π, then
cos2α+cos2β+cos2γ=1+2cosαcosβcosγ.
Proof of identity: Rewriting the above identity, we have
2(cos2α+cos2β+cos2γ)−3=4cosαcosβcosγ−1.
We will show that
LHS=RHS.
We start with
S=cos(2α)+cos(2β)+cos(2γ)=2(cos2α+cos2β+cos2γ)−3=LHS.
Now,
cos(2α)+cos(2β)=2cos(α+β)cos(α−β)=2cos(2π−γ)cos(α−β)=2cos(γ)cos(α−β).
Then
S=2cos(γ)cos(α−β)+2cos2(γ)−1=2cos(γ)(cos(α−β)+cos(γ))−1=2cos(γ)(cos(α−β)+cos(α+β))−1=4cosαcosβcosγ−1=RHS.
This implies LHS=RHS, i.e.
2(cos2α+cos2β+cos2γ)−3=4cosαcosβcosγ−1.
Hence, we finally get our identity.
Helper diagram for proof
Now, triangle ABC in the diagram to the right, where A,B and C are the centers of the three black circles, has side lengths ∣AB∣=r1+r2, ∣BC∣=r2+r3, ∣CA∣=r1+r3.
Let O be the center of the small red circle with radius r4 externally tangential to all of the three black circles, then
∣AO∣=r1+r4, ∣BO∣=r2+r4, ∣CO∣=r3+r4.
Also, let ∠AOB=γ, ∠BOC=α, ∠AOC=β.
Then applying the cosine rule in triangles AOB,BOC, and AOC gives
cos(γ)=2⋅AO⋅BOAO2+BO2−AB2=2(r4+r1)(r4+r2)(r4+r1)2+(r4+r2)2−(r1+r2)2=2(r4+r1)(r4+r2)2r42+2r4(r1+r2)−2r1r2=1−(r4+r1)(r4+r2)2r1r2.
Replacing radii with their respective curvatures, we get
cos(γ)=1−(k4+k1)(k4+k2)2k42=1−λ3.
Similarly, we have
cos(β)cos(α)=1−(k4+k1)(k4+k3)2k42=1−λ2=1−(k4+k2)(k4+k3)2k42=1−λ1.
Placing the values of cos(α),cos(β),cos(γ) on our trignometric identity, we get
(1−λ1)2+(1−λ2)2+(1−λ3)2=1+2(1−λ1)(1−λ2)(1−λ3).
Simplifying, we get
λ12+λ22+λ32+2λ1λ2λ3=2(λ1λ2+λ2λ3+λ1λ3).
Dividing both sides by λ1λ2λ3 gives
λ2λ3λ1+λ1λ3λ2+λ1λ2λ3+2=2(λ11+λ21+λ31).
Putting the values of λ1,λ2,λ3 gives
2k42(k4+k1)2+2k42(k4+k2)2+2k42(k4+k3)2+2=2(2k42(k4+k2)(k4+k3)+2k42(k4+k1)(k4+k2)+2k42(k4+k1)(k4+k2)).
Simplifying, we get
k12+k22+k32+2k4(k1+k2+k3)+7k42=6k42+4k4(k1+k2+k3)+2(k1k2+k2k3+k1k3).
Further simplifying, we get
k12+k22+k32+k42=2k4(k1+k2+k3)+2(k1k2+k2k3+k1k3)=(k1+k2+k3+k4)2−(k12+k22+k32+k42).
Finally, we have
2(k12+k22+k32+k42)=(k1+k2+k3+k4)2.
Hence, the theorem is proved. □