# If \(a > b\), is it always true that \(a^n > b^n?\)

True or false?If \(a>b\), then \[a^n>b^n.\]

**Why some people says it's true:** The more you multiply, the bigger it gets, so obviously if \(a>b\), \(a^n>b^n\).

**Why some people says it's false:** It doesn't work for all numbers.

This statement is \( \color{red} {\textbf{false}}\). In particular, if \(a>b>0\), then \[\begin{cases} a^n>b^n,~ \text{if } n>0 \\ a^n<b^n,~ \text{if } n<0 \\ a^n=b^n,~ \text{if } n=0.\end{cases}\]

Proof:First, we need to understand the graph of the function \(f(x)=k^x\) (\(k\neq0\)).

As shown in the figure above we have 3 cases:

If \(k>1\), the graph of \(f\) is monotonically increasing, \(f(x)\geqslant1\) when \(x\geqslant0\), and \(f(x)<1\) when \(x<0\).

If \(k<1\), the graph of \(f\) is monotonically decreasing, \(f(x)\leqslant1\) when \(x\geqslant0\), and \(f(x)>1\) when \(x<0\).

If \(k=1\), then \(f(x)=1\).Now consider 3 functions \(f(x)=a^x\), \(g(x)=b^x\) and \(h(x)=\frac{f(x)}{g(x)},\) where \(a>b>0.\) Then we have \[h(x)=\frac{a^x}{b^x}=\left(\frac{a}{b}\right)^x.\] As \(a>b>0\) and \(b\neq0\), we have \(\frac{a}{b}>1\).

Hence, \(h(x)=\left(\frac{a}{b}\right)^x\) is in the form \(k^x\) and \(k=\frac{a}{b}>1\), so the graph of \(h(x)\) is monotonically increasing.When \(x>0\), we have \(h(x)=\frac{f(x)}{g(x)}>1\). Since \(g(x)>0\), \[f(x)>g(x) \Rightarrow a^x>b^x.\]

When \(x<0\), we have \(h(x)=\frac{f(x)}{g(x)}<1\). Since \(g(x)>0\), \[f(x)<g(x) \Rightarrow a^x<b^x.\]

When \(x=0\), we have \(h(x)=\frac{f(x)}{g(x)}=1\). Thus, \[f(x)=g(x) \Rightarrow a^x=b^x. \ _\square\]

## Examples

Let \(a=3, b=2,\) and \(n=-1\). Find the relationship between \(a^n\) and \(b^n\).

We have \[\begin{align} a^n &= 3^{-1}= 0.33\ldots\\ b^n &= 2^{-1} = 0.5. \end{align}\]

So, \(a^n < b^n\). \(_\square\)

Let \(a=3, b=2,\) and \(n=0\). Find the relationship between \(a^n\) and \(b^n\).

We have \[\begin{align} a^n &= 3^0 = 1\\ b^n &= 2^0 = 1. \end{align}\]

So, \(a^n = b^n\). \(_\square\)

So, we see that inspite of \(a\) being greater than \(b\), \(a^n\) is not always greater than \(b^n\).

**Cite as:**If \(a > b\), is it always true that \(a^n > b^n?\).

*Brilliant.org*. Retrieved from https://brilliant.org/wiki/if-a-b-is-it-always-true-that-an-bn/