Potential Difference - A Classical Circuit - Kirchhoff´s Law
This article treats about a classical standard approach on potential difference.
Consider the following basic circuit
In which we will admit the following polarities and direction of current, thus like the electricals nets I and II, and junctions A, A', A'', B, B' and B''.
We will attack the problem considering the Kirchhoff´s Law about "voltages" and currents.
In the Net I:
\(-{\Large\epsilon}+R{ i }_{ 1 }+2R{ i }_{ 1 }=0\Leftrightarrow{ i }_{ 1 }=\dfrac {{\Large\epsilon}}{ 3R }\)
In the Net II:
\(2R{ i }_{ 2 }+R{ i }_{ 2 }-2R{ i }_{ 1 }-R{ i }_{ 1 }=0\Leftrightarrow3R{ i }_{ 2 }=3R{ i }_{ 1 }\Leftrightarrow{i}_{2}={i}_{1}\)
In the A' junction(Point):
\(i={i}_{1}+{i}_{2}\Leftrightarrow{i}_{1}={i}_{2}=\dfrac{i}{2}\)
That Way:
\({U}_{A'A}=R.{i}_{1}=R.\dfrac {{\Large\epsilon}}{ 3R }=\dfrac {{\Large\epsilon}}{ 3 }\)
So,
\({V}_{A}={V}_{A'}+{U}_{A'A}={\Large\epsilon}-\dfrac {{\Large\epsilon}}{3}=\dfrac {{2\Large\epsilon}}{ 3 }\)
In the Same Way:
\({U}_{B'B}=2R.{i}_{2}=2R.\dfrac {{\Large\epsilon}}{ 3R }=\dfrac {{2\Large\epsilon}}{ 3 }\)
So,
\({V}_{B}={V}_{B'}+{U}_{B'B}={\Large\epsilon}-\dfrac {{2\Large\epsilon}}{3}=\dfrac {{\Large\epsilon}}{ 3 }\)
Because,
\({V}_{A'}={V}_{B'}={\Large\epsilon}\)
It can be this values any potential. Including \({\Large\epsilon}\). Verify!!!
Then,
\({V}_{A}-{V}_{B}=\dfrac {{2\Large\epsilon}}{ 3 }-\dfrac {{\Large\epsilon}}{ 3 }=\dfrac {{\Large\epsilon}}{ 3 }\)
\(\Huge \boxed{!!!}\)
Take a look that,
\({V}_{B}-{V}_{A}=-\dfrac {{\Large\epsilon}}{ 3 }\)
And
\({V}_{A''}={V}_{B''}=0\)
These ones are dependents of \({V}_{A'}\) e \({V}_{B'}\).