Rationalize the denominator of 1 2 . \frac{1}{\sqrt{2}}. 2 1 .
Using what we learned, we have
1 2 = 1 2 × 2 2 = 2 2 . □ \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2} } \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}.\ _\square 2 1 = 2 1 × 2 2 = 2 2 . □
Rationalize the denominator of 2 2 \frac{2}{\sqrt {\sqrt {2}}} 2 2 .
We have
2 2 = 2 × 2 2 × 2 = 2 2 2 = 2 2 × 2 2 × 2 = 2 2 2 2 = 2 2 . □ \begin{aligned}
\dfrac{2}{\sqrt {\sqrt {2}}} & = \dfrac{2 × \sqrt{\sqrt {2}}}{\sqrt{\sqrt {2}} × \sqrt{\sqrt {2}}}\\
& = \dfrac{2 \sqrt{\sqrt {2}}}{\sqrt {2}}\\
& = \dfrac{2 \sqrt{\sqrt {2}} × \sqrt{2}}{\sqrt {2} × \sqrt {2}}\\
& = \dfrac{2 \sqrt{2\sqrt{2}}}{2}\\
& = \sqrt{2\sqrt{2}}.\ _\square
\end{aligned} 2 2 = 2 × 2 2 × 2 = 2 2 2 = 2 × 2 2 2 × 2 = 2 2 2 2 = 2 2 . □
Rationalize the denominator of y − 1 y + 1 \frac{\sqrt{y-1}}{\sqrt{y+1}} y + 1 y − 1 .
We have
y − 1 y + 1 = ( y − 1 ) ( y + 1 ) ( y + 1 ) ( y + 1 ) = y 2 − 1 y + 1 . □ \begin{aligned}
\dfrac{\sqrt{y-1}}{\sqrt{y+1}} & = \dfrac{\big(\sqrt{y-1}\big)\big(\sqrt{y+1}\big)}{\big(\sqrt{y+1}\big)\big(\sqrt{y+1}\big)}\\
& =\dfrac {\sqrt{y^2-1}}{y + 1}.\ _\square
\end{aligned} y + 1 y − 1 = ( y + 1 ) ( y + 1 ) ( y − 1 ) ( y + 1 ) = y + 1 y 2 − 1 . □
Rationalize the expression y 2 x 2 − 1 x + 1 . \frac{y^2 \sqrt{x^2 - 1}}{\sqrt{x+1}}. x + 1 y 2 x 2 − 1 .
Rationalizing the denominator, we get
y 2 x 2 − 1 x + 1 × x + 1 x + 1 = y 2 x 2 − 1 × x + 1 x + 1 . \frac{y^2 \sqrt{x^2 - 1}}{\sqrt{x+1}} \times \frac{\sqrt{x+1}}{\sqrt{x+1}}=\frac{y^2 \sqrt{x^2 -1} \times\sqrt{x+1}}{x+1} . x + 1 y 2 x 2 − 1 × x + 1 x + 1 = x + 1 y 2 x 2 − 1 × x + 1 .
Simplifying even further, we have
y 2 ( x − 1 ) ( x + 1 ) × x + 1 x + 1 = y 2 ( x − 1 ) ( x + 1 ) 2 x + 1 = y 2 ( x + 1 ) x − 1 x + 1 . \begin{aligned}
\frac{y^2 \sqrt{(x-1)(x+1)} \times\sqrt{x+1}}{x+1}
&= \frac{y^2 \sqrt{(x-1)(x+1)^2} }{x+1} \\
&=\frac{y^2(x+1) \sqrt{x-1}}{x+1}.
\end{aligned} x + 1 y 2 ( x − 1 ) ( x + 1 ) × x + 1 = x + 1 y 2 ( x − 1 ) ( x + 1 ) 2 = x + 1 y 2 ( x + 1 ) x − 1 .
Canceling out x + 1 , x+1, x + 1 , our final result is
y 2 x − 1 . □ y^2\sqrt{x-1}.\ _\square y 2 x − 1 . □
Rationalize the denominator of 3 3 3 \frac {3}{\sqrt[3]{3}} 3 3 3
We have
3 3 3 = 3 × 9 3 3 3 × 9 3 = 3 × 9 3 27 3 = 3 × 9 3 3 = 9 3 . □ \begin{aligned}
\dfrac {3}{\sqrt[3]{3}} & = \dfrac {3 × \sqrt[3]{9}}{\sqrt[3]{3} × \sqrt[3]{9}}\\
& = \dfrac {3 × \sqrt[3]{9}}{\sqrt[3]{27}}\\
& = \dfrac {3 × \sqrt[3]{9}}{3}\\
& =\sqrt[3]{9}.\ _\square
\end{aligned} 3 3 3 = 3 3 × 3 9 3 × 3 9 = 3 27 3 × 3 9 = 3 3 × 3 9 = 3 9 . □
Now consider fractions of the form a b + c , \frac{a}{b + \sqrt{c}}, b + c a , where a a a ,b b b and c c c are integers. If we multiply by b + c b + c , \frac{b+\sqrt{c}}{b+\sqrt{c}}, b + c b + c , we will obtain a b + a c b 2 + 2 b c + c , \frac{ab +a\sqrt{c}}{b^2 + 2b\sqrt{c} + c} , b 2 + 2 b c + c ab + a c , which as you can see is a more complicated form of the fraction. Therefore, whenever we obtain such type of fractions, we utilize the difference of squares formula ( x − y ) ( x + y ) = x 2 − y 2 . (x-y)(x+y)=x^2 - y^2. ( x − y ) ( x + y ) = x 2 − y 2 . This is particularly useful because if x = m x = \sqrt{m} x = m and y = n , y=\sqrt{n}, y = n , then ( m − n ) ( m + n ) = m − n . \big(\sqrt{m}-\sqrt{n}\big)\big(\sqrt{m}+\sqrt{n}\big) = m - n . ( m − n ) ( m + n ) = m − n .
We are now ready to rationalize the denominators of our original expression by multiplying by b − c b − c : \frac{b-\sqrt{c}}{b-\sqrt{c}}: b − c b − c :
a b + c × b − c b − c = a b − a c b 2 − c . \frac{a}{b + \sqrt{c}} \times \frac{b-\sqrt{c}}{b - \sqrt{c} }=\frac{ab - a\sqrt{c}}{b^2 - c} . b + c a × b − c b − c = b 2 − c ab − a c .
Simplify the following expression:
3 3 + 2 2 + 5 . \frac{3}{\sqrt{3}} + \frac{2}{\sqrt{2} + \sqrt{5} }. 3 3 + 2 + 5 2 .
Let us approach the two components separately. 3 3 \frac{3}{\sqrt{3}} 3 3 can be simplified by rationalizing with 3 3 \frac{\sqrt{3}}{\sqrt{3}} 3 3 and the right part 2 2 + 5 \frac{2}{\sqrt{2} + \sqrt{5} } 2 + 5 2 can be simplified by multiplying by 2 − 5 2 − 5 : \frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}-\sqrt{5}} : 2 − 5 2 − 5 :
3 3 × 3 3 + 2 2 + 5 × 2 − 5 2 − 5 = 3 3 3 + 2 ( 2 − 5 ) − 3 . \frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}+ \frac{2}{\sqrt{2} + \sqrt{5} } \times \frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}-\sqrt{5}} =\frac{3\sqrt{3}}{3} + \frac{2(\sqrt{2}-\sqrt{5})}{-3}. 3 3 × 3 3 + 2 + 5 2 × 2 − 5 2 − 5 = 3 3 3 + − 3 2 ( 2 − 5 ) .
From this we obtain our answer 3 3 − 2 2 + 2 5 3 . □ \frac{3\sqrt{3}-2\sqrt{2}+2\sqrt{5}}{3}.\ _\square 3 3 3 − 2 2 + 2 5 . □
Simplify the following expression: 7 6 + 303 3 × ( 101 − 98 ) . \frac{7\sqrt{6} + \sqrt{303} }{ \sqrt{3} } \times (\sqrt{101} - \sqrt{98} ). 3 7 6 + 303 × ( 101 − 98 ) .
We begin by writing 98 \sqrt{98} 98 as 7 2 : 7\sqrt{2}: 7 2 :
7 6 + 303 3 × ( 101 − 7 2 ) . \frac{7\sqrt{6} + \sqrt{303} }{ \sqrt{3} } \times (\sqrt{101} - 7\sqrt{2} ). 3 7 6 + 303 × ( 101 − 7 2 ) .
Rationalizing the denominator by 3 \sqrt{3} 3 gives
7 6 × 3 + 303 3 3 × ( 101 − 7 2 ) = 7 3 × 2 × 3 + 3 × 101 × 3 3 × ( 101 − 7 2 ) = 7 3 2 × 2 + 3 2 × 101 3 × ( 101 − 7 2 ) = 3 × 7 2 + 3 101 3 × ( 101 − 7 2 ) . \begin{aligned}
\frac{7\sqrt{6} \times \sqrt{3} + \sqrt{303} \sqrt{3} }{ 3 } \times (\sqrt{101} - 7\sqrt{2} )
= &\frac{7\sqrt{3\times 2 \times 3} + \sqrt{3\times101\times 3} }{ 3 } \times (\sqrt{101} - 7\sqrt{2} )\\
=& \frac{7\sqrt{3^2 \times 2 } + \sqrt{3^2 \times101 } }{ 3 } \times (\sqrt{101} - 7\sqrt{2} )\\
=& \frac{3\times 7\sqrt{2 } + 3\sqrt{101 } }{ 3 } \times (\sqrt{101} - 7\sqrt{2} ).
\end{aligned} 3 7 6 × 3 + 303 3 × ( 101 − 7 2 ) = = = 3 7 3 × 2 × 3 + 3 × 101 × 3 × ( 101 − 7 2 ) 3 7 3 2 × 2 + 3 2 × 101 × ( 101 − 7 2 ) 3 3 × 7 2 + 3 101 × ( 101 − 7 2 ) .
Cancelling out the 3 3 3 's on the left side gives
( 7 2 + 101 ) × ( 101 − 7 2 ) = 7 202 − 98 + 101 − 7 202 = 3. □ \begin{aligned}
(7\sqrt{2 } + \sqrt{101 } ) \times (\sqrt{101} - 7\sqrt{2} )
&=7\sqrt{202} - 98 + 101 - 7\sqrt{202}\\
&=3.\ _\square
\end{aligned} ( 7 2 + 101 ) × ( 101 − 7 2 ) = 7 202 − 98 + 101 − 7 202 = 3. □
Simplify
( 5 ) 3 − ( 4 ) 3 ( 5 ) 3 + ( 4 ) 3 . \dfrac{\big({\sqrt{5}\big)}^3 - {\big(\sqrt{4}\big)}^3}{{\big(\sqrt{5}\big)}^3 + {\big(\sqrt{4}\big)}^3}. ( 5 ) 3 + ( 4 ) 3 ( 5 ) 3 − ( 4 ) 3 .
We have
( 5 ) 3 − ( 4 ) 3 ( 5 ) 3 + ( 4 ) 3 = ( 5 − 4 ) ( 5 + 20 + 4 ) ( 5 + 4 ) ( 5 − 20 + 4 ) = ( 5 − 4 ) ( 9 + 2 5 ) ( 5 + 4 ) ( 9 − 2 5 ) = ( 5 − 4 ) ( 9 + 2 5 ) ( 9 + 2 5 ) ( 5 + 4 ) ( 9 − 2 5 ) ( 9 + 2 5 ) = ( 5 − 2 ) ( 81 + 20 + 36 5 ) ( 5 + 2 ) ( 81 − 20 ) = ( 5 − 2 ) ( 101 + 36 5 ) ( 5 + 2 ) ( 61 ) = ( 101 + 36 5 ) ( 5 − 2 ) ( 61 ) ( 5 + 2 ) = ( 101 + 36 5 ) ( 5 − 2 ) ( 5 − 2 ) ( 61 ) ( 5 + 2 ) ( 5 − 2 ) = ( 101 + 36 5 ) ( 5 + 4 − 4 5 ) ( 61 ) ( 5 − 4 ) = ( 101 + 36 5 ) ( 9 − 4 5 ) 61 = 189 − 80 5 61 . □ \begin{aligned}
\dfrac{{(\sqrt{5})}^3 - {(\sqrt{4})}^3}{{(\sqrt{5})}^3 + {(\sqrt{4})}^3}
& = \dfrac{(\sqrt 5 - \sqrt 4)(5 + \sqrt{20} + 4)}{(\sqrt 5 + \sqrt 4)(5 - \sqrt{20} + 4)}\\
& = \dfrac{\big(\sqrt{5} - \sqrt{4}\big)\big(9 + 2\sqrt{5}\big)}{\big(\sqrt{5} + \sqrt{4}\big)\big(9 - 2\sqrt{5}\big)}\\
& = \dfrac{\big(\sqrt{5} - \sqrt{4}\big)\big(9 + 2\sqrt{5}\big)\big(9 + 2\sqrt{5}\big)}{\big(\sqrt{5} + \sqrt{4}\big)\big(9 - 2\sqrt{5}\big)\big(9+ 2\sqrt{5}\big)}\\
& = \dfrac{\big(\sqrt{5} - 2\big)\big(81 + 20 + 36\sqrt{5}\big)}{\big(\sqrt{5} + 2\big)(81-20)}\\
& = \dfrac{\big(\sqrt 5 - 2\big)\big(101 + 36\sqrt {5}\big)}{\big(\sqrt 5 + 2\big)(61)}\\
& = \dfrac{\big(101 + 36\sqrt {5}\big)\big(\sqrt 5 - 2\big)}{(61)\big(\sqrt 5 + 2\big)}\\
& = \dfrac{\big(101 + 36\sqrt {5}\big)\big(\sqrt 5 - 2\big)\big(\sqrt 5 - 2\big)}{(61)\big(\sqrt 5 + 2\big)\big(\sqrt 5 - 2\big)}\\
& = \dfrac{\big(101 + 36\sqrt {5}\big)\big(5 + 4 - 4\sqrt 5\big)}{(61)(5-4)}\\
& = \dfrac{\big(101 + 36\sqrt {5}\big)\big(9 - 4\sqrt 5\big)}{61}\\
& = \dfrac {189 - 80\sqrt 5}{61}.\ _\square
\end{aligned} ( 5 ) 3 + ( 4 ) 3 ( 5 ) 3 − ( 4 ) 3 = ( 5 + 4 ) ( 5 − 20 + 4 ) ( 5 − 4 ) ( 5 + 20 + 4 ) = ( 5 + 4 ) ( 9 − 2 5 ) ( 5 − 4 ) ( 9 + 2 5 ) = ( 5 + 4 ) ( 9 − 2 5 ) ( 9 + 2 5 ) ( 5 − 4 ) ( 9 + 2 5 ) ( 9 + 2 5 ) = ( 5 + 2 ) ( 81 − 20 ) ( 5 − 2 ) ( 81 + 20 + 36 5 ) = ( 5 + 2 ) ( 61 ) ( 5 − 2 ) ( 101 + 36 5 ) = ( 61 ) ( 5 + 2 ) ( 101 + 36 5 ) ( 5 − 2 ) = ( 61 ) ( 5 + 2 ) ( 5 − 2 ) ( 101 + 36 5 ) ( 5 − 2 ) ( 5 − 2 ) = ( 61 ) ( 5 − 4 ) ( 101 + 36 5 ) ( 5 + 4 − 4 5 ) = 61 ( 101 + 36 5 ) ( 9 − 4 5 ) = 61 189 − 80 5 . □
Rationalize the denominator of 2 3 5 4 − 3 4 . \dfrac {{\sqrt{\sqrt[3]{2}}}}{{\sqrt[4]{\sqrt{5}}}-{\sqrt[4]{\sqrt{3}}}}. 4 5 − 4 3 3 2 .
We have
2 3 5 4 − 3 4 = ( 2 1 3 ) 1 2 ( 5 1 4 ) 1 2 − ( 3 1 4 ) 1 2 = 2 1 6 5 1 8 − 3 1 8 = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 8 − 3 1 8 ) ( 5 1 8 + 3 1 8 ) = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 4 + 3 1 4 ) ( 5 1 4 − 3 1 4 ) ( 5 1 4 + 3 1 4 ) = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 4 + 3 1 4 ) ( 5 1 2 − 3 1 2 ) = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 4 + 3 1 4 ) ( 5 1 2 + 3 1 2 ) ( 5 1 2 − 3 1 2 ) ( 5 1 2 + 3 1 2 ) = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 4 + 3 1 4 ) ( 5 1 2 + 3 1 2 ) 5 − 3 = 2 1 6 ( 5 1 8 + 3 1 8 ) ( 5 1 4 + 3 1 4 ) ( 5 1 2 + 3 1 2 ) 2 . □ \begin{aligned}
\dfrac{{\sqrt{\sqrt[3]{2}}}}{{\sqrt[4]{\sqrt{5}}}-{\sqrt[4]{\sqrt{3}}}}
& = \dfrac {\left(2^{\frac{1}{3}}\right)^{\frac{1}{2}}}{{\left(5^{\frac {1}{4}}\right)^{\frac{1}{2}}-\left(3^{\frac {1}{4}}\right)^{\frac{1}{2}}}}\\
& = \dfrac{2^{\frac{1}{6}}}{5^{\frac{1}{8}} - 3^{\frac{1}{8}}}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)}{\left(5^{\frac{1}{8}} - 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right)}{\left(5^{\frac{1}{4}} - 3^{\frac{1}{4}}\right) \left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right)}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right)}{\left(5^{\frac{1}{2}} - 3^{\frac{1}{2}}\right)}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right) \left(5^{\frac{1}{2}} + 3^{\frac{1}{2}}\right)}{\left(5^{\frac{1}{2}} - 3^{\frac{1}{2}}\right)\left(5^{\frac{1}{2}} + 3^{\frac{1}{2}}\right)}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right) \left(5^{\frac{1}{2}} + 3^{\frac{1}{2}}\right)}{5-3}\\
& = \dfrac{2^{\frac{1}{6}}\left(5^{\frac{1}{8}} + 3^{\frac{1}{8}}\right)\left(5^{\frac{1}{4}} + 3^{\frac{1}{4}}\right) \left(5^{\frac{1}{2}} + 3^{\frac{1}{2}}\right)}{2}.\ _\square
\end{aligned} 4 5 − 4 3 3 2 = ( 5 4 1 ) 2 1 − ( 3 4 1 ) 2 1 ( 2 3 1 ) 2 1 = 5 8 1 − 3 8 1 2 6 1 = ( 5 8 1 − 3 8 1 ) ( 5 8 1 + 3 8 1 ) 2 6 1 ( 5 8 1 + 3 8 1 ) = ( 5 4 1 − 3 4 1 ) ( 5 4 1 + 3 4 1 ) 2 6 1 ( 5 8 1 + 3 8 1 ) ( 5 4 1 + 3 4 1 ) = ( 5 2 1 − 3 2 1 ) 2 6 1 ( 5 8 1 + 3 8 1 ) ( 5 4 1 + 3 4 1 ) = ( 5 2 1 − 3 2 1 ) ( 5 2 1 + 3 2 1 ) 2 6 1 ( 5 8 1 + 3 8 1 ) ( 5 4 1 + 3 4 1 ) ( 5 2 1 + 3 2 1 ) = 5 − 3 2 6 1 ( 5 8 1 + 3 8 1 ) ( 5 4 1 + 3 4 1 ) ( 5 2 1 + 3 2 1 ) = 2 2 6 1 ( 5 8 1 + 3 8 1 ) ( 5 4 1 + 3 4 1 ) ( 5 2 1 + 3 2 1 ) . □
Rationalize the denominator of 1 2 3 4 5 . \dfrac{1}{\sqrt[5]{\sqrt[4]{\sqrt[3]{\sqrt{2}}}}}. 5 4 3 2 1 .
We have
1 2 3 4 5 = 1 × ( 2 3 4 5 ) 4 2 3 4 5 × ( 2 3 4 5 ) 4 = 2 3 5 2 3 4 = 2 3 5 × ( 2 3 4 ) 3 2 3 4 × ( 2 3 4 ) 3 = 2 3 5 × 2 4 2 3 = 2 3 5 × 2 4 × ( 2 3 ) 2 2 3 × ( 2 3 ) 2 = 2 3 5 × 2 4 × 2 3 2 = 2 3 5 × 2 4 × 2 3 × 2 2 × 2 = 2 3 5 × 2 4 × 2 3 × 2 2 . □ \begin{aligned}
\dfrac{1}{\sqrt[5]{\sqrt[4]{\sqrt[3]{\sqrt{2}}}}} & = \dfrac{1 × {\left(\sqrt[5]{\sqrt[4]{\sqrt[3]{\sqrt{2}}}}\right)}^{4}}{\sqrt[5]{\sqrt[4]{\sqrt[3]{\sqrt{2}}}} × {\left(\sqrt[5]{\sqrt[4]{\sqrt[3]{\sqrt{2}}}}\right)}^{4}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}}}{\sqrt[4]{\sqrt[3]{\sqrt{2}}}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × {\left(\sqrt[4]{\sqrt[3]{\sqrt{2}}}\right)}^{3}}{\sqrt[4]{\sqrt[3]{\sqrt{2}}} × {\left(\sqrt[4]{\sqrt[3]{\sqrt{2}}}\right)}^{3}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × \sqrt[4]{\sqrt{2}}}{\sqrt[3]{\sqrt{2}}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × \sqrt[4]{\sqrt{2}} × {\left(\sqrt[3]{\sqrt{2}}\right)}^{2}}{\sqrt[3]{\sqrt{2}} × {\left(\sqrt[3]{\sqrt{2}}\right)}^{2}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × \sqrt[4]{\sqrt{2}} × \sqrt[3]{2}}{\sqrt{2}}\\
& = \dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × \sqrt[4]{\sqrt{2}} × \sqrt[3]{2} × \sqrt{2}}{\sqrt{2} × \sqrt{2}}\\
& =\dfrac{\sqrt[5]{\sqrt[3]{\sqrt{2}}} × \sqrt[4]{\sqrt{2}} × \sqrt[3]{2} × \sqrt{2}}{2}.\ _\square
\end{aligned} 5 4 3 2 1 = 5 4 3 2 × ( 5 4 3 2 ) 4 1 × ( 5 4 3 2 ) 4 = 4 3 2 5 3 2 = 4 3 2 × ( 4 3 2 ) 3 5 3 2 × ( 4 3 2 ) 3 = 3 2 5 3 2 × 4 2 = 3 2 × ( 3 2 ) 2 5 3 2 × 4 2 × ( 3 2 ) 2 = 2 5 3 2 × 4 2 × 3 2 = 2 × 2 5 3 2 × 4 2 × 3 2 × 2 = 2 5 3 2 × 4 2 × 3 2 × 2 . □