The basic sum-to-product identities for sine and cosine are as follows:
sinx+sinycosx+cosy=2sin(2x+y)cos(2x−y)=2cos(2x+y)cos(2x−y).
From these identities, we can also infer the difference-to-product identities:
sinx−sinycosx−cosy=2cos(2x+y)sin(2x−y)=−2sin(2x+y)sin(2x−y)=2sin(2x+y)sin(2y−x)
and the tangent sum and difference-to-product identities:
tan(x)+tan(y)tan(x)−tan(y)=tan(x+y)(1−tan(x)tan(y))=tan(x−y)(1+tan(x)tan(y)).
The proof of the basic sum-to-product identity for sine proceeds as follows:
2sin(2α+β)cos(2α−β)=22sin(2α+β+2α−β)+sin(2α+β−2α−β)=sin(22α)+sin(22β)=sinα+sinβ.
The proofs for cosine and tangent are similar. □
Simplify
cos3x+cosxcos3x−cosx.
We have
cos3x+cosxcos3x−cosx=2cos(23x+x)cos(23x−x)−2sin(23x+x)sin(23x−x)=−2cos2xcosx2sin2xsinx=−tan2xtanx. □
In triangle △ABC, prove that
sinA+sinB+sinC=4cos2Acos2Bcos2C.
We have
sinA+sinB+sinC=2sin(2A+B)cos(2A−B)+2sin2Ccos2C=2cos2Ccos(2A−B)+2sin2Ccos2C=2cos2C(cos(2A−2B)+sin2C)=2cos2C(cos(2A−2B)+cos(2A+2B))=2cos2C(2cos2Acos2B)=4cos2Acos2Bcos2C. □
Find all solutions in the domain [−2π,2π] to the equation
cos(4x)+cos(2x)=0.
We have
cos(4x)+cos(2x)2cos(24x+2x)cos(24x−2x)cos(3x)cos(x)=0=0=0.
For cos(3x)=0, x=64nπ±π⟹x=−65π, −6π, 6π, 65π.
For cos(x)=0, x=2nπ±2π⟹x=−23π, −2π, 2π, 23π.
Hence, the solutions are x=−23π, −65π, −2π, −6π, 6π, 2π, 65π, 23π. □
Write sin(x)+sin(2x)+sin(3x)+sin(4x) as a product of trigonometric functions.
We have
sin(x)+sin(2x)+sin(3x)+sin(4x)=(sin(4x)+sin(x))+(sin(3x)+sin(2x))=2sin(24x+x)cos(24x−x)+2sin(23x+2x)cos(23x−2x)=2sin(25x)cos(23x)+2sin(25x)cos(2x)=2sin(25x)(cos(23x)+cos(2x))=2sin(25x)(2cos(223x+2x)cos(223x−2x))=2sin(25x)(2cos(x)cos(2x))=4sin(25x)cos(x)cos(2x). □