Understanding \(u\) substitution
There are loads of techniques you can use to integrate functions, but this wiki is going to focus on one technique: \(u\) substitution.
Understanding what \(u\) substitution is
THIS SECTION IS CURRENTLY ON PROGRESS
\(u\) substitution is a method where you can use a variable to simplify the function in the integral to become an easier function to integrate. This technique is actually the reverse of the chain rule for derivatives.
Examples
Evaluate the integral: \[\int { { (2-x) }^{ 10 } } dx\]
Let us set \(u=2-x\).
Then \(\dfrac { du }{ dx } =-1\), \(du=-dx\) and \(dx=-du\). (It is extremely simple to find \(du\) if \(\dfrac { du }{ dx } \) is already known, so in future problems we will skip this step.)
Plugging \(u\) into our integral,
\[\int { { (2-x) }^{ 10 } } dx=\int { { u }^{ 10 }(-du) } =-\int { { u }^{ 10 }du } =-\frac { { u }^{ 11 } }{ 11 } +C=-\frac { { (2-x) }^{ 11 } }{ 11 } +C\]
Notice that the substitution made the integrand simpler, by making the problem into a problem where the power rule can be used.
Evaluate the integral: \[\int { { x }^{ 2 }{ ({ x }^{ 3 }+2) }^{ 101 } } dx\]
Let us set \({ x }^{ 3 }+2\).
Then \(du=3{ x }^{ 2 }dx\) and \(dx=\dfrac { du }{ 3{ x }^{ 2 } } \).
Plugging \(u\) into our integral,
\[\int { { x }^{ 2 }{ ({ x }^{ 3 }+2) }^{ 101 } } dx=\int { { x }^{ 2 }{ u }^{ 101 } } \frac { du }{ 3{ x }^{ 2 } } =\frac { 1 }{ 3 } \int { { u }^{ 101 } } du=\frac { 1 }{ 3 } \frac { { u }^{ 102 } }{ 102 } +C=\frac { { ({ x }^{ 3 }+2) }^{ 102 } }{ 306 } +C\]
Notice that the substitution, again, made the integrand simpler, by making the problem into a problem where the power rule can be used.
Evaluate the integral: \[\int { \frac { 1 }{ \sqrt [ 4 ]{ 1-3x } } } dx\]
Let us set \(u=1-3x\).
Then \(du=-3dx\) and \(dx=-\dfrac { du }{ 3 } \).
Plugging \(u\) into our integral,
\[\int { \frac { 1 }{ \sqrt [ 4 ]{ 1-3x } } } dx=\int { \frac { 1 }{ \sqrt [ 4 ]{ u } } } \left( -\frac { du }{ 3 } \right) =-\frac { 1 }{ 3 } \int { \frac { 1 }{ \sqrt [ 4 ]{ u } } } du=-\frac { 1 }{ 3 } \int { { u }^{ -\frac { 1 }{ 4 } } } du=-\frac { 1 }{ 3 } \frac { { u }^{ \frac { 3 }{ 4 } } }{ \frac { 3 }{ 4 } } +C=-\frac { 4\sqrt [ 4 ]{ { (1-3x) }^{ 3 } } }{ 9 } +C\]
Notice that the substitution, again, made the integrand simpler, by making the problem into a problem where the power rule can be used.
Evaluate the integral: \[\int { \sin ^{ 4 }{ (x) } \cos { (x) } } dx\]
Let us set \(u=\sin { (x) } \).
Then \(du=\cos { (x) } dx\) and \(dx=\sec { (x) } du\).
Plugging \(u\) into our integral,
\[\int { \sin ^{ 4 }{ (x) } \cos { (x) } } dx=\int { { u }^{ 4 }\cos { (x) } \sec { (x) } } du=\int { { u }^{ 4 } } du=\frac { { u }^{ 5 } }{ 5 } +C=\frac { \sin ^{ 5 }{ (x) } }{ 5 } +C\]
Notice that the substitution made the integrand simpler, by making the problem into a problem where the derivative of \(\sin { (x) } \) can be used.
Here is an exercise for you: Evaluate the integral:
\[\int { \cos { (\pi x) } \cos { (\sin { (\pi x) } ) } } dx\]
Good Luck!