# Chebyshev Polynomials - Application to Polynomial Interpolation

Recall that the Chebyshev polynomials are defined by

$T_n (x) = \cos ( n \arccos x ),\quad T_n ( \cos \theta) = \cos n \theta .$

The initial values of $T_{n} (x)$ are

$\begin{aligned} T_0(x) &= 1 \\ T_1(x) &= x \\ T_2(x) &= 2x^2 - 1 \\ T_3(x) &= 4x^3 - 3x \\ T_4(x) &= 8x^4 - 8x^2 + 1 \\ T_5(x) &= 16x^5 - 20x^3 + 5x \\ T_6(x) &= 32x^6 - 48x^4 + 18x^2 - 1 \\ T_7(x) &= 64x^7 - 112x^5 + 56x^3 - 7x \\ T_8(x) &= 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \\ T_9(x) &= 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x. \\ T_{10}(x) &= 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2-1. \\ \end{aligned}$

#### Contents

## Finding Roots of a Chebyshev Polynomial

For a given value $y$ between -1 and 1, the solutions to $T_n (x) = y$ are $\cos \frac{ \theta + 2 \pi k } { n }$, where $k$ ranges from 1 to $n$ and $\cos \theta = y$.

For each of these values, we have

$T_n \left( \cos \frac{ \theta + 2 \pi k } { n }\right) = \cos\left( n \times \frac{ \theta + 2 \pi k } { n } \right ) = \cos \theta = y.$

Since we have $n$ solutions to a degree $n$ polynomial, these are all of the roots. $_\square$

In terms of $\cos A$, what are the roots of $T_3 ( x) = 0?$

In terms of $\cos A$, what are the roots of $2 T_4 ( x) - 1 = 0?$

In terms of $\cos A$, what are the roots of $4 T_5 ^2 ( x) - 3 = 0?$

## Finding Minimal Polynomial of Roots in Trigonometric Form

The converse of the above theorem is as follows:

The polynomial whose roots are $\cos \frac{ \theta + 2\pi k } { n }$, where $k$ ranges from 1 to $n$, is

$T_n ( x) = \cos \theta .$

In terms of $T_n$, find a polynomial whose roots are $\cos 10 ^ \circ , \cos 100^\circ, \cos 190^ \circ, \cos 180 ^ \circ$.

In terms of $T_n$, find a polynomial whose roots are $\cos \left( \theta + \frac{ 2 n } { 5} \pi \right)$ for $i = 1$ to $5.$

## Additional Questions

To answer problems in this section, you should be familiar with Vieta's formula to help you find the sum and product of roots.

Evaluate

$\cos 10 ^ \circ \times \cos 50 ^ \circ \times \cos 70 ^ \circ.$

Evaluate

$\frac{ 1}{ \cos 25 ^ \circ } + \frac{ 1}{ \cos 115 ^ \circ } + \frac{ 1}{ \cos 205 ^ \circ } + \frac{ 1}{ \cos 295 ^ \circ }.$

In terms of $T_n$, find a polynomial whose roots are exactly

$\cos^2 1 ^ \circ, \cos^2 3 ^ \circ, \cos^2 5 ^ \circ, \ldots , \cos^2 89 ^ \circ .$

**Cite as:**Chebyshev Polynomials - Application to Polynomial Interpolation.

*Brilliant.org*. Retrieved from https://brilliant.org/wiki/chebyshev-polynomials-application-to-polynomial/