Distribution of Primes
The prime number theorem describes the asymptotic distribution of prime numbers. It gives us a general view of how primes are distributed amongst positive integers and also states that the primes become less common as they become larger. Informally, the theorem states that if any random positive integer is selected in the range of zero to a large number , the probability that the selected integer is a prime is about where is the natural logarithm of .
One application of the theorem is that it gives a sense of how long it will take to find a prime of a certain size by a random search. Many cryptosystems (e.g. RSA) require primes ; the theorem says that the probability that a randomly chosen number of that size is prime is roughly
or if the search is restricted to odd numbers. So the expectation is that roughly numbers will have to be tested for primality, which can be computationally expensive.
Contents
Counting Primes; Statement of the Theorem
To understand the precise statement of the theorem, define to be the prime-counting function that gives the number of primes less than or equal to , for any real number . For example, because there are four prime numbers (2, 3, 5, and 7) less than or equal to 10. It is a well-known result that . The next natural question to ask is, "How fast does go to infinity?" The prime number theorem provides the answer: at the same rate as i.e.
or written with the asymptotic notation,
Note that this notation (and the theorem) does not say anything about the limit of the difference of the two functions as . Indeed, this difference tends to infinity as increases. The theorem does say that this difference tends to infinity more slowly than does.
and Tables of Values
The function is actually a closer approximation to . It is an easy calculus exercise that , so as well. Many more precise statements about the size of use . Here is a table comparing values of these functions, where the relative error is computed as
Relative error | |||
The Prime Number
The prime number theorem is equivalent to the statement that the prime number satisfies
the asymptotic notation meaning again that the relative error of this approximation approaches as approaches infinity.
Connection with the Riemann Hypothesis
The Riemann zeta function has a deep connection with the distribution of primes. The famous Riemann hypothesis, about the zeroes of the zeta function, is equivalent to many statements involving prime numbers. In particular, it is equivalent to a much tighter bound than can currently be proven on the error in the estimate for :
(see big O notation for an explanation of the latter term). More explicitly, the Riemann hypothesis implies
where .
Bertrand's Postulate
Let be a real number. Show that for sufficiently large , there is always a prime between and .
We have
So and therefore for sufficiently large .
For this statement is known as Bertrand's postulate; using more precise estimates for , one can show that there is always a prime between and for .
How many numbers in this infinite sequence are perfect squares?
Bonus: Try to prove your answer!
Distribution of Primes Modulo
From the classical proof of Dirichlet's theorem on primes in arithmetic progressions, it is known that for any positive integer , the prime numbers are approximately evenly distributed among the reduced residue classes modulo (i.e., the residue classes that are relatively prime to ). For example, the reduced residue classes modulo are 1, 3, 5, and 7, so one would expect that of all prime numbers end in 1, end in 3, and so on.
In general, about of all primes less than end in a 1, 3, 7, and 9, respectively. Would the same symmetry hold if we considered the last digits in pairs of consecutive primes less than, say,
Surprisingly, in 2016, mathematicians Robert Lemke Oliver and Kannan Soundarajan discovered that this equidistribution does not persist, at least for relatively small when one considers the distribution of pairs of consecutive primes, modulo . Consider, for example, the distribution of prime pairs modulo . Let
If the primes were truly random, one might expect the limiting proportions
But the numerical evidence suggests otherwise, at least when considering relatively small ! Among the first million primes (excluding 2), one sees the erratic distribution
These numbers differ substantially from the expected value for each one.
Lemke Oliver and Soundarajan have also observed that this discrepancy holds in other bases, such as base 10. They have conjectured an explanation for the biases, but the conjecture has not yet been proven.
For each integer , choose a divisor of , uniformly at random from the set of divisors of We denote by the probability that
is divisible by 32.
Amazingly, there exists a positive integer such that for all , the value of is exactly . What is the smallest for which this is true?